Cargando…
ASD-DiagNet: A Hybrid Learning Approach for Detection of Autism Spectrum Disorder Using fMRI Data
Heterogeneous mental disorders such as Autism Spectrum Disorder (ASD) are notoriously difficult to diagnose, especially in children. The current psychiatric diagnostic process is based purely on the behavioral observation of symptomology (DSM-5/ICD-10) and may be prone to misdiagnosis. In order to m...
Autores principales: | Eslami, Taban, Mirjalili, Vahid, Fong, Alvis, Laird, Angela R., Saeed, Fahad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6890833/ https://www.ncbi.nlm.nih.gov/pubmed/31827430 http://dx.doi.org/10.3389/fninf.2019.00070 |
Ejemplares similares
-
ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data
por: Almuqhim, Fahad, et al.
Publicado: (2021) -
Machine Learning Methods for Diagnosing Autism Spectrum Disorder and Attention- Deficit/Hyperactivity Disorder Using Functional and Structural MRI: A Survey
por: Eslami, Taban, et al.
Publicado: (2021) -
Fast-GPU-PCC: A GPU-Based Technique to Compute Pairwise Pearson’s Correlation Coefficients for Time Series Data—fMRI Study
por: Eslami, Taban, et al.
Publicado: (2018) -
The autism spectrum disorders (ASD)
por: Gambino, G
Publicado: (2014) -
Oral microbiota and autism spectrum disorder (ASD)
por: Olsen, Ingar, et al.
Publicado: (2019)