Cargando…
Glial SIK3: A central player in ion and volume homeostasis in Drosophila peripheral nerves
The electrical properties of neuronal cells rely on gradients of ions across their membranes and the extracellular fluid (ECF) in which they are bathed. Little is known regarding how the ECF volume and content is maintained. In this issue, Li et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.2...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891086/ https://www.ncbi.nlm.nih.gov/pubmed/31723008 http://dx.doi.org/10.1083/jcb.201910017 |
Sumario: | The electrical properties of neuronal cells rely on gradients of ions across their membranes and the extracellular fluid (ECF) in which they are bathed. Little is known regarding how the ECF volume and content is maintained. In this issue, Li et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201907138) identify the kinase SIK3 in glia as a key signal transduction regulator in ion and volume homeostasis in Drosophila peripheral nerves. |
---|