Cargando…
Basal ganglia volume and shape in anorexia nervosa
BACKGROUND: Reward-centred models have proposed that anomalies in the basal ganglia circuitry that underlies reward learning and habit formation perpetuate anorexia nervosa (AN). The present study aimed to investigate the volume and shape of key basal ganglia regions, including the bilateral caudate...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891247/ https://www.ncbi.nlm.nih.gov/pubmed/31586464 http://dx.doi.org/10.1016/j.appet.2019.104480 |
Sumario: | BACKGROUND: Reward-centred models have proposed that anomalies in the basal ganglia circuitry that underlies reward learning and habit formation perpetuate anorexia nervosa (AN). The present study aimed to investigate the volume and shape of key basal ganglia regions, including the bilateral caudate, putamen, nucleus accumbens (NAcc), and globus pallidus in AN. METHODS: The present study combined data from two existing studies resulting in a sample size of 46 women with AN and 56 age-matched healthy comparison (HC) women. Group differences in volume and shape of the regions of interest were examined. Within the AN group, the impact of eating disorder characteristics on volume and shape of the basal ganglia regions were also explored. RESULTS: The shape analyses revealed inward deformations in the left caudate, right NAcc, and bilateral ventral and internus globus pallidus, and outward deformations in the right middle and posterior globus pallidus in the AN group. CONCLUSIONS: The present findings appear to fit with the theoretical models suggesting that there are alterations in the basal ganglia regions associated with habit formation and reward processing in AN. Further investigation of structural and functional connectivity of these regions in AN as well as their role in recovery would be of interest. |
---|