Cargando…

Mobility Aware Duty Cycling Algorithm (MADCAL) A Dynamic Communication Threshold for Mobile Sink in Wireless Sensor Network †

The hotspot issue in wireless sensor networks, with nodes nearest the sink node losing energy fastest and degrading network lifetime, is a well-referenced problem. Mobile sink nodes have been proposed as a solution to this. They do not completely remove the hotspot problem though, with nodes the sin...

Descripción completa

Detalles Bibliográficos
Autores principales: Thomson, Craig, Wadhaj, Isam, Tan, Zhiyuan, Al-Dubai, Ahmed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891301/
https://www.ncbi.nlm.nih.gov/pubmed/31726741
http://dx.doi.org/10.3390/s19224930
Descripción
Sumario:The hotspot issue in wireless sensor networks, with nodes nearest the sink node losing energy fastest and degrading network lifetime, is a well-referenced problem. Mobile sink nodes have been proposed as a solution to this. They do not completely remove the hotspot problem though, with nodes the sink passes most closely still expending more energy than others. This study proposes a lightweight algorithm, located in the media access control (MAC) layer of static nodes and utilising knowledge of predictable sink node mobility. This is in order to create a dynamic communication threshold between static nodes and the sink, within which static nodes awaken, lessening competition for sink communication between nodes. In utilising predictable mobility and factors already known to the static node, such as location and interference range, there is no need for energy-consuming messaging. Analysis and simulation results, tested on a lightweight implementation of a carrier-sense multiple-access-based MAC protocol, show a significant improvement in energy consumption in both controlled and random environments, with frame delivery improved to the point where sink speed is negated. This is when compared to the existing duty cycling approach.