Cargando…

Parasitics Impact on the Performance of Rectifier Circuits in Sensing RF Energy Harvesting

This work presents some accurate guidelines for the design of rectifier circuits in radiofrequency (RF) energy harvesting. New light is shed on the design process, paying special attention to the nonlinearity of the circuits and the modeling of the parasitic elements. Two different configurations ar...

Descripción completa

Detalles Bibliográficos
Autores principales: Alex-Amor, Antonio, Moreno-Núñez, Javier, Fernández-González, José M., Padilla, Pablo, Esteban, Jaime
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891323/
https://www.ncbi.nlm.nih.gov/pubmed/31766171
http://dx.doi.org/10.3390/s19224939
Descripción
Sumario:This work presents some accurate guidelines for the design of rectifier circuits in radiofrequency (RF) energy harvesting. New light is shed on the design process, paying special attention to the nonlinearity of the circuits and the modeling of the parasitic elements. Two different configurations are tested: a Cockcroft–Walton multiplier and a half-wave rectifier. Several combinations of diodes, capacitors, inductors and loads were studied. Furthermore, the parasitics that are part of the circuits were modeled. Thus, the most harmful parasitics were identified and studied in depth in order to improve the conversion efficiency and enhance the performance of self-sustaining sensing systems. The experimental results show that the parasitics associated with the diode package and the via holes in the PCB (Printed Circuit Board) can leave the circuits inoperative. As an example, the rectifier efficiency is below 5% without considering the influence of the parasitics. On the other hand, it increases to over 30% in both circuits after considering them, twice the value of typical passive rectifiers.