Cargando…
Characterizing Word Embeddings for Zero-Shot Sensor-Based Human Activity Recognition
In this paper, we address Zero-shot learning for sensor activity recognition using word embeddings. The goal of Zero-shot learning is to estimate an unknown activity class (i.e., an activity that does not exist in a given training dataset) by learning to recognize components of activities expressed...
Autores principales: | Matsuki, Moe, Lago, Paula, Inoue, Sozo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891337/ https://www.ncbi.nlm.nih.gov/pubmed/31752376 http://dx.doi.org/10.3390/s19225043 |
Ejemplares similares
-
Zero-Shot Human Activity Recognition Using Non-Visual Sensors
por: Al Machot, Fadi, et al.
Publicado: (2020) -
A Method for Sensor-Based Activity Recognition in Missing Data Scenario
por: Hossain, Tahera, et al.
Publicado: (2020) -
Multi-Layer Cross Loss Model for Zero-Shot Human Activity Recognition
por: Wu, Tong, et al.
Publicado: (2020) -
Zero-Shot Neural Decoding with Semi-Supervised Multi-View Embedding
por: Akamatsu, Yusuke, et al.
Publicado: (2023) -
Scaling Human-Object Interaction Recognition in the Video through Zero-Shot Learning
por: Maraghi, Vali Ollah, et al.
Publicado: (2021)