Cargando…

Efficacy of M(split) Estimation in Displacement Analysis

Sets of geodetic observations often contain groups of observations that differ from each other in the functional model (or at least in the values of its parameters). Sets of observations obtained at various measurement epochs is a practical example in such a context. From the conventional point of v...

Descripción completa

Detalles Bibliográficos
Autores principales: Wiśniewski, Zbigniew, Duchnowski, Robert, Dumalski, Andrzej
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891339/
https://www.ncbi.nlm.nih.gov/pubmed/31752403
http://dx.doi.org/10.3390/s19225047
_version_ 1783475790326792192
author Wiśniewski, Zbigniew
Duchnowski, Robert
Dumalski, Andrzej
author_facet Wiśniewski, Zbigniew
Duchnowski, Robert
Dumalski, Andrzej
author_sort Wiśniewski, Zbigniew
collection PubMed
description Sets of geodetic observations often contain groups of observations that differ from each other in the functional model (or at least in the values of its parameters). Sets of observations obtained at various measurement epochs is a practical example in such a context. From the conventional point of view, for example, in the least squares estimation, subsets in question should be separated before the parameter estimation. Another option would be application of M(split) estimation, which is based on a fundamental assumption that each observation is related to several competitive functional models. The optimal assignment of every observation to the respective functional model is automatic during the estimation process. Considering deformation analysis, each observation is assigned to several functional models, each of which is related to one measurement epoch. This paper focuses on the efficacy of the method in detecting point displacements. The research is based on example observation sets and the application of Monte Carlo simulations. The results were compared with the classical deformation analysis, which shows that the M(split) estimation seems to be an interesting alternative for conventional methods. The most promising are results obtained for disordered observation sets where the M(split) estimation reveals its natural advantage over the conventional approach.
format Online
Article
Text
id pubmed-6891339
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-68913392019-12-12 Efficacy of M(split) Estimation in Displacement Analysis Wiśniewski, Zbigniew Duchnowski, Robert Dumalski, Andrzej Sensors (Basel) Article Sets of geodetic observations often contain groups of observations that differ from each other in the functional model (or at least in the values of its parameters). Sets of observations obtained at various measurement epochs is a practical example in such a context. From the conventional point of view, for example, in the least squares estimation, subsets in question should be separated before the parameter estimation. Another option would be application of M(split) estimation, which is based on a fundamental assumption that each observation is related to several competitive functional models. The optimal assignment of every observation to the respective functional model is automatic during the estimation process. Considering deformation analysis, each observation is assigned to several functional models, each of which is related to one measurement epoch. This paper focuses on the efficacy of the method in detecting point displacements. The research is based on example observation sets and the application of Monte Carlo simulations. The results were compared with the classical deformation analysis, which shows that the M(split) estimation seems to be an interesting alternative for conventional methods. The most promising are results obtained for disordered observation sets where the M(split) estimation reveals its natural advantage over the conventional approach. MDPI 2019-11-19 /pmc/articles/PMC6891339/ /pubmed/31752403 http://dx.doi.org/10.3390/s19225047 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wiśniewski, Zbigniew
Duchnowski, Robert
Dumalski, Andrzej
Efficacy of M(split) Estimation in Displacement Analysis
title Efficacy of M(split) Estimation in Displacement Analysis
title_full Efficacy of M(split) Estimation in Displacement Analysis
title_fullStr Efficacy of M(split) Estimation in Displacement Analysis
title_full_unstemmed Efficacy of M(split) Estimation in Displacement Analysis
title_short Efficacy of M(split) Estimation in Displacement Analysis
title_sort efficacy of m(split) estimation in displacement analysis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891339/
https://www.ncbi.nlm.nih.gov/pubmed/31752403
http://dx.doi.org/10.3390/s19225047
work_keys_str_mv AT wisniewskizbigniew efficacyofmsplitestimationindisplacementanalysis
AT duchnowskirobert efficacyofmsplitestimationindisplacementanalysis
AT dumalskiandrzej efficacyofmsplitestimationindisplacementanalysis