Cargando…
Jammer Classification in GNSS Bands Via Machine Learning Algorithms
This paper proposes to treat the jammer classification problem in the Global Navigation Satellite System bands as a black-and-white image classification problem, based on a time-frequency analysis and image mapping of a jammed signal. The paper also proposes to apply machine learning approaches in o...
Autores principales: | Morales Ferre, Ruben, de la Fuente, Alberto, Lohan, Elena Simona |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891345/ https://www.ncbi.nlm.nih.gov/pubmed/31698860 http://dx.doi.org/10.3390/s19224841 |
Ejemplares similares
-
Collaborative Solutions for Interference Management in GNSS-Based Aircraft Navigation
por: Nicola, Mario, et al.
Publicado: (2020) -
Machine-Learning-Assisted Cyclostationary Spectral Analysis for Joint Signal Classification and Jammer Detection at the Physical Layer of Cognitive Radio
por: Nawaz, Tassadaq, et al.
Publicado: (2023) -
Evaluating the Effect of Jammer Radiation on Learning and Memory in Male Rats
por: Yazdanpanahi, Mehrnaz, et al.
Publicado: (2023) -
Localization of a Power-Modulated Jammer
por: Tedeschi, Pietro, et al.
Publicado: (2022) -
NLOS Multipath Classification of GNSS Signal Correlation Output Using Machine Learning
por: Suzuki, Taro, et al.
Publicado: (2021)