Cargando…

Application of Spectroscopic UV-Vis and FT-IR Screening Techniques Coupled with Multivariate Statistical Analysis for Red Wine Authentication: Varietal and Vintage Year Discrimination

One of the most important issues in the wine sector and prevention of adulterations of wines are discrimination of grape varieties, geographical origin of wine, and year of vintage. In this experimental research study, UV-Vis and FT-IR spectroscopic screening analytical approaches together with chem...

Descripción completa

Detalles Bibliográficos
Autores principales: Geană, Elisabeta-Irina, Ciucure, Corina Teodora, Apetrei, Constantin, Artem, Victoria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891476/
https://www.ncbi.nlm.nih.gov/pubmed/31744212
http://dx.doi.org/10.3390/molecules24224166
Descripción
Sumario:One of the most important issues in the wine sector and prevention of adulterations of wines are discrimination of grape varieties, geographical origin of wine, and year of vintage. In this experimental research study, UV-Vis and FT-IR spectroscopic screening analytical approaches together with chemometric pattern recognition techniques were applied and compared in addressing two wine authentication problems: discrimination of (i) varietal and (ii) year of vintage of red wines produced in the same oenological region. UV-Vis and FT-IR spectra of red wines were registered for all the samples and the principal features related to chemical composition of the samples were identified. Furthermore, for the discrimination and classification of red wines a multivariate data analysis was developed. Spectral UV-Vis and FT-IR data were reduced to a small number of principal components (PCs) using principal component analysis (PCA) and then partial least squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) were performed in order to develop qualitative classification and regression models. The first three PCs used to build the models explained 89% of the total variance in the case of UV-Vis data and 98% of the total variance for FR-IR data. PLS-DA results show that acceptable linear regression fits were observed for the varietal classification of wines based on FT-IR data. According to the obtained LDA classification rates, it can be affirmed that UV-Vis spectroscopy works better than FT-IR spectroscopy for the discrimination of red wines according to the grape variety, while classification of wines according to year of vintage was better for the LDA based FT-IR data model. A clear discrimination of aged wines (over six years) was observed. The proposed methodologies can be used as accessible tools for the wine identity assurance without the need for costly and laborious chemical analysis, which makes them more accessible to many laboratories.