Cargando…
Kinetic Energy Harvesting for Wearable Medical Sensors
The process of collecting low-level kinetic energy, which is present in all moving systems, by using energy harvesting principles, is of particular interest in wearable technology, especially in ultra-low power devices for medical applications. In fact, the replacement of batteries with innovative p...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891546/ https://www.ncbi.nlm.nih.gov/pubmed/31726683 http://dx.doi.org/10.3390/s19224922 |
_version_ | 1783475839533318144 |
---|---|
author | Gljušćić, Petar Zelenika, Saša Blažević, David Kamenar, Ervin |
author_facet | Gljušćić, Petar Zelenika, Saša Blažević, David Kamenar, Ervin |
author_sort | Gljušćić, Petar |
collection | PubMed |
description | The process of collecting low-level kinetic energy, which is present in all moving systems, by using energy harvesting principles, is of particular interest in wearable technology, especially in ultra-low power devices for medical applications. In fact, the replacement of batteries with innovative piezoelectric energy harvesting devices can result in mass and size reduction, favoring the miniaturization of wearable devices, as well as drastically increasing their autonomy. The aim of this work is to assess the power requirements of wearable sensors for medical applications, and address the intrinsic problem of piezoelectric kinetic energy harvesting devices that can be used to power them; namely, the narrow area of optimal operation around the eigenfrequencies of a specific device. This is achieved by using complex numerical models comprising modal, harmonic and transient analyses. In order to overcome the random nature of excitations generated by human motion, novel excitation modalities are investigated with the goal of increasing the specific power outputs. A solution embracing an optimized harvester geometry and relying on an excitation mechanism suitable for wearable medical sensors is hence proposed. The electrical circuitry required for efficient energy management is considered as well. |
format | Online Article Text |
id | pubmed-6891546 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68915462019-12-18 Kinetic Energy Harvesting for Wearable Medical Sensors Gljušćić, Petar Zelenika, Saša Blažević, David Kamenar, Ervin Sensors (Basel) Article The process of collecting low-level kinetic energy, which is present in all moving systems, by using energy harvesting principles, is of particular interest in wearable technology, especially in ultra-low power devices for medical applications. In fact, the replacement of batteries with innovative piezoelectric energy harvesting devices can result in mass and size reduction, favoring the miniaturization of wearable devices, as well as drastically increasing their autonomy. The aim of this work is to assess the power requirements of wearable sensors for medical applications, and address the intrinsic problem of piezoelectric kinetic energy harvesting devices that can be used to power them; namely, the narrow area of optimal operation around the eigenfrequencies of a specific device. This is achieved by using complex numerical models comprising modal, harmonic and transient analyses. In order to overcome the random nature of excitations generated by human motion, novel excitation modalities are investigated with the goal of increasing the specific power outputs. A solution embracing an optimized harvester geometry and relying on an excitation mechanism suitable for wearable medical sensors is hence proposed. The electrical circuitry required for efficient energy management is considered as well. MDPI 2019-11-12 /pmc/articles/PMC6891546/ /pubmed/31726683 http://dx.doi.org/10.3390/s19224922 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gljušćić, Petar Zelenika, Saša Blažević, David Kamenar, Ervin Kinetic Energy Harvesting for Wearable Medical Sensors |
title | Kinetic Energy Harvesting for Wearable Medical Sensors |
title_full | Kinetic Energy Harvesting for Wearable Medical Sensors |
title_fullStr | Kinetic Energy Harvesting for Wearable Medical Sensors |
title_full_unstemmed | Kinetic Energy Harvesting for Wearable Medical Sensors |
title_short | Kinetic Energy Harvesting for Wearable Medical Sensors |
title_sort | kinetic energy harvesting for wearable medical sensors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891546/ https://www.ncbi.nlm.nih.gov/pubmed/31726683 http://dx.doi.org/10.3390/s19224922 |
work_keys_str_mv | AT gljuscicpetar kineticenergyharvestingforwearablemedicalsensors AT zelenikasasa kineticenergyharvestingforwearablemedicalsensors AT blazevicdavid kineticenergyharvestingforwearablemedicalsensors AT kamenarervin kineticenergyharvestingforwearablemedicalsensors |