Cargando…

Nutraceutical Extract from Dulse (Palmaria palmata L.) Inhibits Primary Human Neutrophil Activation

Palmaria palmata L. (Palmariaceae), commonly known as “dulse”, is a red alga that grows on the northern coasts of the Atlantic and Pacific oceans, and is widely used as source of fiber and protein. Dulse is reported to contain anti-inflammatory and antioxidant compounds, albeit no study has investig...

Descripción completa

Detalles Bibliográficos
Autores principales: Millan-Linares, Maria C, Martin, Maria E, Rodriguez, Noelia M, Toscano, Rocio, Claro, Carmen, Bermudez, Beatriz, Pedroche, Justo, Millan, Francisco, Montserrat-de la Paz, Sergio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891576/
https://www.ncbi.nlm.nih.gov/pubmed/31731428
http://dx.doi.org/10.3390/md17110610
Descripción
Sumario:Palmaria palmata L. (Palmariaceae), commonly known as “dulse”, is a red alga that grows on the northern coasts of the Atlantic and Pacific oceans, and is widely used as source of fiber and protein. Dulse is reported to contain anti-inflammatory and antioxidant compounds, albeit no study has investigated these effects in primary human neutrophils. Implication strategies to diminish neutrophil activation have the potential to prevent pathological states. We evaluated the ability of a phenolic dulse extract (DULEXT) to modulate the lipopolysaccharide (LPS)-mediated activation of primary human neutrophils. Intracellular reactive oxygen species (ROS) were measured by fluorescence analysis and nitric oxide (NO) production using the Griess reaction. Inflammatory enzymes and cytokines were detected by ELISA and RT-qPCR. The results show that DULEXT diminished the neutrophil activation related to the down-regulation of TLR4 mRNA expression, deceased gene expression and the LPS-induced release of the chemoattractant mediator IL-8 and the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α. ROS, NO, and myeloperoxidase (MPO) were also depressed. The data indicated that DULEXT has the potential to disrupt the activation of human primary neutrophils and the derived inflammatory and prooxidant conditions, and suggest a new role for Palmaria palmata L. in the regulation of the pathogenesis of health disorders in which neutrophils play a key role, including atherosclerosis.