Cargando…
Microbial Conversion of Toxic Resin Acids
Organic wood extractives—resin acids—significantly contribute to an increase in the toxicity level of pulp and paper industry effluents. Entering open ecosystems, resin acids accumulate and have toxic effects on living organisms, which can lead to the ecological imbalance. Among the most effective m...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891630/ https://www.ncbi.nlm.nih.gov/pubmed/31739575 http://dx.doi.org/10.3390/molecules24224121 |
_version_ | 1783475861464285184 |
---|---|
author | Luchnikova, Natalia A. Ivanova, Kseniya M. Tarasova, Ekaterina V. Grishko, Victoria V. Ivshina, Irina B. |
author_facet | Luchnikova, Natalia A. Ivanova, Kseniya M. Tarasova, Ekaterina V. Grishko, Victoria V. Ivshina, Irina B. |
author_sort | Luchnikova, Natalia A. |
collection | PubMed |
description | Organic wood extractives—resin acids—significantly contribute to an increase in the toxicity level of pulp and paper industry effluents. Entering open ecosystems, resin acids accumulate and have toxic effects on living organisms, which can lead to the ecological imbalance. Among the most effective methods applied to neutralize these ecotoxicants is enzymatic detoxification using microorganisms. A fundamental interest in the in-depth study of the oxidation mechanisms of resin acids and the search for their key biodegraders is increasing every year. Compounds from this group receive attention because of the need to develop highly effective procedures of resin acid removal from pulp and paper effluents and also the possibility to obtain their derivatives with pronounced pharmacological effects. Over the past fifteen years, this is the first report analyzing the data on distribution, the impacts on living organisms, and the microbial transformation of resin acids. Using the example of dehydroabietic acid—the dominant compound of resin acids in effluents—the review discusses the features of interactions between microorganisms and this pollutant and also highlights the pathways and main products of resin acid bioconversion. |
format | Online Article Text |
id | pubmed-6891630 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68916302019-12-12 Microbial Conversion of Toxic Resin Acids Luchnikova, Natalia A. Ivanova, Kseniya M. Tarasova, Ekaterina V. Grishko, Victoria V. Ivshina, Irina B. Molecules Review Organic wood extractives—resin acids—significantly contribute to an increase in the toxicity level of pulp and paper industry effluents. Entering open ecosystems, resin acids accumulate and have toxic effects on living organisms, which can lead to the ecological imbalance. Among the most effective methods applied to neutralize these ecotoxicants is enzymatic detoxification using microorganisms. A fundamental interest in the in-depth study of the oxidation mechanisms of resin acids and the search for their key biodegraders is increasing every year. Compounds from this group receive attention because of the need to develop highly effective procedures of resin acid removal from pulp and paper effluents and also the possibility to obtain their derivatives with pronounced pharmacological effects. Over the past fifteen years, this is the first report analyzing the data on distribution, the impacts on living organisms, and the microbial transformation of resin acids. Using the example of dehydroabietic acid—the dominant compound of resin acids in effluents—the review discusses the features of interactions between microorganisms and this pollutant and also highlights the pathways and main products of resin acid bioconversion. MDPI 2019-11-14 /pmc/articles/PMC6891630/ /pubmed/31739575 http://dx.doi.org/10.3390/molecules24224121 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Luchnikova, Natalia A. Ivanova, Kseniya M. Tarasova, Ekaterina V. Grishko, Victoria V. Ivshina, Irina B. Microbial Conversion of Toxic Resin Acids |
title | Microbial Conversion of Toxic Resin Acids |
title_full | Microbial Conversion of Toxic Resin Acids |
title_fullStr | Microbial Conversion of Toxic Resin Acids |
title_full_unstemmed | Microbial Conversion of Toxic Resin Acids |
title_short | Microbial Conversion of Toxic Resin Acids |
title_sort | microbial conversion of toxic resin acids |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891630/ https://www.ncbi.nlm.nih.gov/pubmed/31739575 http://dx.doi.org/10.3390/molecules24224121 |
work_keys_str_mv | AT luchnikovanataliaa microbialconversionoftoxicresinacids AT ivanovakseniyam microbialconversionoftoxicresinacids AT tarasovaekaterinav microbialconversionoftoxicresinacids AT grishkovictoriav microbialconversionoftoxicresinacids AT ivshinairinab microbialconversionoftoxicresinacids |