Cargando…
Classification of Low Frequency Signals Emitted by Power Transformers Using Sensors and Machine Learning Methods
This paper proposes a method of automatically detecting and classifying low frequency noise generated by power transformers using sensors and dedicated machine learning algorithms. The method applies the frequency spectra of sound pressure levels generated during operation by transformers in a real...
Autores principales: | Jancarczyk, Daniel, Bernaś, Marcin, Boczar, Tomasz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891639/ https://www.ncbi.nlm.nih.gov/pubmed/31717658 http://dx.doi.org/10.3390/s19224909 |
Ejemplares similares
-
Distribution Transformer Parameters Detection Based on Low-Frequency Noise, Machine Learning Methods, and Evolutionary Algorithm
por: Jancarczyk, Daniel, et al.
Publicado: (2020) -
Machine Learning-Based Sensor Data Modeling Methods for Power Transformer PHM
por: Li, Anyi, et al.
Publicado: (2018) -
Low-Power Analog Processing for Sensing Applications: Low-Frequency Harmonic Signal Classification
por: White, Daniel J., et al.
Publicado: (2013) -
Study of the Influence of Winding and Sensor Design on Ultra-High Frequency Partial Discharge Signals in Power Transformers
por: Beura, Chandra Prakash, et al.
Publicado: (2020) -
Harmonizing minds and machines: survey on transformative power of machine learning in music
por: Liang, Jing
Publicado: (2023)