Cargando…
The Optimal Image Date Selection for Evaluating Cultivated Land Quality Based on Gaofen-1 Images
This study proposes a method for determining the optimal image date to improve the evaluation of cultivated land quality (CLQ). Five vegetation indices: leaf area index (LAI), difference vegetation index (DVI), enhanced vegetation index (EVI), normalized difference vegetation index (NDVI), and ratio...
Autores principales: | Xia, Ziqing, Peng, Yiping, Liu, Shanshan, Liu, Zhenhua, Wang, Guangxing, Zhu, A-Xing, Hu, Yueming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891656/ https://www.ncbi.nlm.nih.gov/pubmed/31766165 http://dx.doi.org/10.3390/s19224937 |
Ejemplares similares
-
The GA-BPNN-Based Evaluation of Cultivated Land Quality in the PSR Framework Using Gaofen-1 Satellite Data
por: Liu, Shanshan, et al.
Publicado: (2019) -
Multi-Frame Super-Resolution of Gaofen-4 Remote Sensing Images
por: Xu, Jieping, et al.
Publicado: (2017) -
Fast Vessel Detection in Gaofen-3 SAR Images with Ultrafine Strip-Map Mode
por: Pan, Zongxu, et al.
Publicado: (2017) -
Coastline Detection with Gaofen-3 SAR Images Using an Improved FCM Method
por: An, Meng, et al.
Publicado: (2018) -
Flood Detection in Gaofen-3 SAR Images via Fully Convolutional Networks
por: Kang, Wenchao, et al.
Publicado: (2018)