Cargando…

Rotating Stall Induced Non-Synchronous Blade Vibration Analysis for an Unshrouded Industrial Centrifugal Compressor

Rotating stall limits the operating range and stability of the centrifugal compressor and has a significant impact on the lifetime of the impeller blade. This paper investigates the relationship between stall pressure wave and its induced non-synchronous blade vibration, which will be meaningful for...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Xinwei, Zhou, Qiang, Yang, Shuhua, Li, Hongkun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891679/
https://www.ncbi.nlm.nih.gov/pubmed/31744093
http://dx.doi.org/10.3390/s19224995
_version_ 1783475873208336384
author Zhao, Xinwei
Zhou, Qiang
Yang, Shuhua
Li, Hongkun
author_facet Zhao, Xinwei
Zhou, Qiang
Yang, Shuhua
Li, Hongkun
author_sort Zhao, Xinwei
collection PubMed
description Rotating stall limits the operating range and stability of the centrifugal compressor and has a significant impact on the lifetime of the impeller blade. This paper investigates the relationship between stall pressure wave and its induced non-synchronous blade vibration, which will be meaningful for stall resonance avoidance at the early design phase. A rotating disc under a time-space varying load condition is first modeled to understand the physics behind stall-induced vibration. Then, experimental work is conducted to verify the model and reveal the mechanism of stall cells evolution process within flow passage and how blade vibrates when suffering such aerodynamic load. The casing mounted pressure sensors are used to capture the low-frequency pressure wave. Strain gauges and tip timing sensors are utilized to monitor the blade vibration. Based on circumferentially distributed pressure sensors and stall parameters identification method, a five stall cells mode is found in this compressor test rig and successfully correlates with the blade non-synchronous vibration. Furthermore, with the help of tip timing measurement, all blades vibration is also evaluated under different operating mass flow rate. Analysis results verify that the proposed model can show the blade forced vibration under stall flow condition. The overall approach presented in this paper is also important for stall vibration and resonance free design with effective experimental verification.
format Online
Article
Text
id pubmed-6891679
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-68916792019-12-12 Rotating Stall Induced Non-Synchronous Blade Vibration Analysis for an Unshrouded Industrial Centrifugal Compressor Zhao, Xinwei Zhou, Qiang Yang, Shuhua Li, Hongkun Sensors (Basel) Article Rotating stall limits the operating range and stability of the centrifugal compressor and has a significant impact on the lifetime of the impeller blade. This paper investigates the relationship between stall pressure wave and its induced non-synchronous blade vibration, which will be meaningful for stall resonance avoidance at the early design phase. A rotating disc under a time-space varying load condition is first modeled to understand the physics behind stall-induced vibration. Then, experimental work is conducted to verify the model and reveal the mechanism of stall cells evolution process within flow passage and how blade vibrates when suffering such aerodynamic load. The casing mounted pressure sensors are used to capture the low-frequency pressure wave. Strain gauges and tip timing sensors are utilized to monitor the blade vibration. Based on circumferentially distributed pressure sensors and stall parameters identification method, a five stall cells mode is found in this compressor test rig and successfully correlates with the blade non-synchronous vibration. Furthermore, with the help of tip timing measurement, all blades vibration is also evaluated under different operating mass flow rate. Analysis results verify that the proposed model can show the blade forced vibration under stall flow condition. The overall approach presented in this paper is also important for stall vibration and resonance free design with effective experimental verification. MDPI 2019-11-16 /pmc/articles/PMC6891679/ /pubmed/31744093 http://dx.doi.org/10.3390/s19224995 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhao, Xinwei
Zhou, Qiang
Yang, Shuhua
Li, Hongkun
Rotating Stall Induced Non-Synchronous Blade Vibration Analysis for an Unshrouded Industrial Centrifugal Compressor
title Rotating Stall Induced Non-Synchronous Blade Vibration Analysis for an Unshrouded Industrial Centrifugal Compressor
title_full Rotating Stall Induced Non-Synchronous Blade Vibration Analysis for an Unshrouded Industrial Centrifugal Compressor
title_fullStr Rotating Stall Induced Non-Synchronous Blade Vibration Analysis for an Unshrouded Industrial Centrifugal Compressor
title_full_unstemmed Rotating Stall Induced Non-Synchronous Blade Vibration Analysis for an Unshrouded Industrial Centrifugal Compressor
title_short Rotating Stall Induced Non-Synchronous Blade Vibration Analysis for an Unshrouded Industrial Centrifugal Compressor
title_sort rotating stall induced non-synchronous blade vibration analysis for an unshrouded industrial centrifugal compressor
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891679/
https://www.ncbi.nlm.nih.gov/pubmed/31744093
http://dx.doi.org/10.3390/s19224995
work_keys_str_mv AT zhaoxinwei rotatingstallinducednonsynchronousbladevibrationanalysisforanunshroudedindustrialcentrifugalcompressor
AT zhouqiang rotatingstallinducednonsynchronousbladevibrationanalysisforanunshroudedindustrialcentrifugalcompressor
AT yangshuhua rotatingstallinducednonsynchronousbladevibrationanalysisforanunshroudedindustrialcentrifugalcompressor
AT lihongkun rotatingstallinducednonsynchronousbladevibrationanalysisforanunshroudedindustrialcentrifugalcompressor