Cargando…
Wearable Fall Detector Using Recurrent Neural Networks
Falls have become a relevant public health issue due to their high prevalence and negative effects in elderly people. Wearable fall detector devices allow the implementation of continuous and ubiquitous monitoring systems. The effectiveness for analyzing temporal signals with low energy consumption...
Autores principales: | Luna-Perejón, Francisco, Domínguez-Morales, Manuel Jesús, Civit-Balcells, Antón |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891713/ https://www.ncbi.nlm.nih.gov/pubmed/31717442 http://dx.doi.org/10.3390/s19224885 |
Ejemplares similares
-
AnkFall—Falls, Falling Risks and Daily-Life Activities Dataset with an Ankle-Placed Accelerometer and Training Using Recurrent Neural Networks
por: Luna-Perejón, Francisco, et al.
Publicado: (2021) -
A Robust Ensemble of Convolutional Neural Networks for the Detection of Monkeypox Disease from Skin Images
por: Muñoz-Saavedra, Luis, et al.
Publicado: (2023) -
Wearable Health Devices for Diagnosis Support: Evolution and Future Tendencies
por: Escobar-Linero, Elena, et al.
Publicado: (2023) -
IoT garment for remote elderly care network
por: Luna-Perejón, Francisco, et al.
Publicado: (2021) -
Wearable Fall Detector using Integrated Sensors and Energy Devices
por: Jung, Sungmook, et al.
Publicado: (2015)