Cargando…
A de novo molecular generation method using latent vector based generative adversarial network
Deep learning methods applied to drug discovery have been used to generate novel structures. In this study, we propose a new deep learning architecture, LatentGAN, which combines an autoencoder and a generative adversarial neural network for de novo molecular design. We applied the method in two sce...
Autores principales: | Prykhodko, Oleksii, Johansson, Simon Viet, Kotsias, Panagiotis-Christos, Arús-Pous, Josep, Bjerrum, Esben Jannik, Engkvist, Ola, Chen, Hongming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892210/ https://www.ncbi.nlm.nih.gov/pubmed/33430938 http://dx.doi.org/10.1186/s13321-019-0397-9 |
Ejemplares similares
-
Randomized SMILES strings improve the quality of molecular generative models
por: Arús-Pous, Josep, et al.
Publicado: (2019) -
SMILES-based deep generative scaffold decorator for de-novo drug design
por: Arús-Pous, Josep, et al.
Publicado: (2020) -
Applications of Deep-Learning in Exploiting Large-Scale and Heterogeneous Compound Data in Industrial Pharmaceutical Research
por: David, Laurianne, et al.
Publicado: (2019) -
Exploring the GDB-13 chemical space using deep generative models
por: Arús-Pous, Josep, et al.
Publicado: (2019) -
Improving Chemical Autoencoder Latent Space and Molecular De Novo Generation Diversity with Heteroencoders
por: Bjerrum, Esben Jannik, et al.
Publicado: (2018)