Cargando…

Identification of a potent small-molecule inhibitor of bacterial DNA repair that potentiates quinolone antibiotic activity in methicillin-resistant Staphylococcus aureus()

The global emergence of antibiotic resistance is one of the most serious challenges facing modern medicine. There is an urgent need for validation of new drug targets and the development of small molecules with novel mechanisms of action. We therefore sought to inhibit bacterial DNA repair mediated...

Descripción completa

Detalles Bibliográficos
Autores principales: Lim, Carine S.Q., Ha, Kam Pou, Clarke, Rebecca S., Gavin, Leigh-Anne, Cook, Declan T., Hutton, Jennie A., Sutherell, Charlotte L., Edwards, Andrew M., Evans, Lindsay E., Tate, Edward W., Lanyon-Hogg, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892255/
https://www.ncbi.nlm.nih.gov/pubmed/31307763
http://dx.doi.org/10.1016/j.bmc.2019.06.025
_version_ 1783475995239514112
author Lim, Carine S.Q.
Ha, Kam Pou
Clarke, Rebecca S.
Gavin, Leigh-Anne
Cook, Declan T.
Hutton, Jennie A.
Sutherell, Charlotte L.
Edwards, Andrew M.
Evans, Lindsay E.
Tate, Edward W.
Lanyon-Hogg, Thomas
author_facet Lim, Carine S.Q.
Ha, Kam Pou
Clarke, Rebecca S.
Gavin, Leigh-Anne
Cook, Declan T.
Hutton, Jennie A.
Sutherell, Charlotte L.
Edwards, Andrew M.
Evans, Lindsay E.
Tate, Edward W.
Lanyon-Hogg, Thomas
author_sort Lim, Carine S.Q.
collection PubMed
description The global emergence of antibiotic resistance is one of the most serious challenges facing modern medicine. There is an urgent need for validation of new drug targets and the development of small molecules with novel mechanisms of action. We therefore sought to inhibit bacterial DNA repair mediated by the AddAB/RecBCD protein complexes as a means to sensitize bacteria to DNA damage caused by the host immune system or quinolone antibiotics. A rational, hypothesis-driven compound optimization identified IMP-1700 as a cell-active, nanomolar potency compound. IMP-1700 sensitized multidrug-resistant Staphylococcus aureus to the fluoroquinolone antibiotic ciprofloxacin, where resistance results from a point mutation in the fluoroquinolone target, DNA gyrase. Cellular reporter assays indicated IMP-1700 inhibited the bacterial SOS-response to DNA damage, and compound-functionalized Sepharose successfully pulled-down the AddAB repair complex. This work provides validation of bacterial DNA repair as a novel therapeutic target and delivers IMP-1700 as a tool molecule and starting point for therapeutic development to address the pressing challenge of antibiotic resistance.
format Online
Article
Text
id pubmed-6892255
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier Science
record_format MEDLINE/PubMed
spelling pubmed-68922552019-12-16 Identification of a potent small-molecule inhibitor of bacterial DNA repair that potentiates quinolone antibiotic activity in methicillin-resistant Staphylococcus aureus() Lim, Carine S.Q. Ha, Kam Pou Clarke, Rebecca S. Gavin, Leigh-Anne Cook, Declan T. Hutton, Jennie A. Sutherell, Charlotte L. Edwards, Andrew M. Evans, Lindsay E. Tate, Edward W. Lanyon-Hogg, Thomas Bioorg Med Chem Article The global emergence of antibiotic resistance is one of the most serious challenges facing modern medicine. There is an urgent need for validation of new drug targets and the development of small molecules with novel mechanisms of action. We therefore sought to inhibit bacterial DNA repair mediated by the AddAB/RecBCD protein complexes as a means to sensitize bacteria to DNA damage caused by the host immune system or quinolone antibiotics. A rational, hypothesis-driven compound optimization identified IMP-1700 as a cell-active, nanomolar potency compound. IMP-1700 sensitized multidrug-resistant Staphylococcus aureus to the fluoroquinolone antibiotic ciprofloxacin, where resistance results from a point mutation in the fluoroquinolone target, DNA gyrase. Cellular reporter assays indicated IMP-1700 inhibited the bacterial SOS-response to DNA damage, and compound-functionalized Sepharose successfully pulled-down the AddAB repair complex. This work provides validation of bacterial DNA repair as a novel therapeutic target and delivers IMP-1700 as a tool molecule and starting point for therapeutic development to address the pressing challenge of antibiotic resistance. Elsevier Science 2019-10-15 /pmc/articles/PMC6892255/ /pubmed/31307763 http://dx.doi.org/10.1016/j.bmc.2019.06.025 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lim, Carine S.Q.
Ha, Kam Pou
Clarke, Rebecca S.
Gavin, Leigh-Anne
Cook, Declan T.
Hutton, Jennie A.
Sutherell, Charlotte L.
Edwards, Andrew M.
Evans, Lindsay E.
Tate, Edward W.
Lanyon-Hogg, Thomas
Identification of a potent small-molecule inhibitor of bacterial DNA repair that potentiates quinolone antibiotic activity in methicillin-resistant Staphylococcus aureus()
title Identification of a potent small-molecule inhibitor of bacterial DNA repair that potentiates quinolone antibiotic activity in methicillin-resistant Staphylococcus aureus()
title_full Identification of a potent small-molecule inhibitor of bacterial DNA repair that potentiates quinolone antibiotic activity in methicillin-resistant Staphylococcus aureus()
title_fullStr Identification of a potent small-molecule inhibitor of bacterial DNA repair that potentiates quinolone antibiotic activity in methicillin-resistant Staphylococcus aureus()
title_full_unstemmed Identification of a potent small-molecule inhibitor of bacterial DNA repair that potentiates quinolone antibiotic activity in methicillin-resistant Staphylococcus aureus()
title_short Identification of a potent small-molecule inhibitor of bacterial DNA repair that potentiates quinolone antibiotic activity in methicillin-resistant Staphylococcus aureus()
title_sort identification of a potent small-molecule inhibitor of bacterial dna repair that potentiates quinolone antibiotic activity in methicillin-resistant staphylococcus aureus()
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892255/
https://www.ncbi.nlm.nih.gov/pubmed/31307763
http://dx.doi.org/10.1016/j.bmc.2019.06.025
work_keys_str_mv AT limcarinesq identificationofapotentsmallmoleculeinhibitorofbacterialdnarepairthatpotentiatesquinoloneantibioticactivityinmethicillinresistantstaphylococcusaureus
AT hakampou identificationofapotentsmallmoleculeinhibitorofbacterialdnarepairthatpotentiatesquinoloneantibioticactivityinmethicillinresistantstaphylococcusaureus
AT clarkerebeccas identificationofapotentsmallmoleculeinhibitorofbacterialdnarepairthatpotentiatesquinoloneantibioticactivityinmethicillinresistantstaphylococcusaureus
AT gavinleighanne identificationofapotentsmallmoleculeinhibitorofbacterialdnarepairthatpotentiatesquinoloneantibioticactivityinmethicillinresistantstaphylococcusaureus
AT cookdeclant identificationofapotentsmallmoleculeinhibitorofbacterialdnarepairthatpotentiatesquinoloneantibioticactivityinmethicillinresistantstaphylococcusaureus
AT huttonjenniea identificationofapotentsmallmoleculeinhibitorofbacterialdnarepairthatpotentiatesquinoloneantibioticactivityinmethicillinresistantstaphylococcusaureus
AT sutherellcharlottel identificationofapotentsmallmoleculeinhibitorofbacterialdnarepairthatpotentiatesquinoloneantibioticactivityinmethicillinresistantstaphylococcusaureus
AT edwardsandrewm identificationofapotentsmallmoleculeinhibitorofbacterialdnarepairthatpotentiatesquinoloneantibioticactivityinmethicillinresistantstaphylococcusaureus
AT evanslindsaye identificationofapotentsmallmoleculeinhibitorofbacterialdnarepairthatpotentiatesquinoloneantibioticactivityinmethicillinresistantstaphylococcusaureus
AT tateedwardw identificationofapotentsmallmoleculeinhibitorofbacterialdnarepairthatpotentiatesquinoloneantibioticactivityinmethicillinresistantstaphylococcusaureus
AT lanyonhoggthomas identificationofapotentsmallmoleculeinhibitorofbacterialdnarepairthatpotentiatesquinoloneantibioticactivityinmethicillinresistantstaphylococcusaureus