Cargando…
Channel-Unet: A Spatial Channel-Wise Convolutional Neural Network for Liver and Tumors Segmentation
It is a challenge to automatically and accurately segment the liver and tumors in computed tomography (CT) images, as the problem of over-segmentation or under-segmentation often appears when the Hounsfield unit (Hu) of liver and tumors is close to the Hu of other tissues or background. In this pape...
Autores principales: | Chen, Yilong, Wang, Kai, Liao, Xiangyun, Qian, Yinling, Wang, Qiong, Yuan, Zhiyong, Heng, Pheng-Ann |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892404/ https://www.ncbi.nlm.nih.gov/pubmed/31827487 http://dx.doi.org/10.3389/fgene.2019.01110 |
Ejemplares similares
-
Weight Pruning-UNet: Weight Pruning UNet with Depth-wise Separable Convolutions for Semantic Segmentation of Kidney Tumors
por: Rao, Patike Kiran, et al.
Publicado: (2022) -
Hepatic vessel segmentation based on 3D swin-transformer with inductive biased multi-head self-attention
por: Wu, Mian, et al.
Publicado: (2023) -
DSKCA-UNet: Dynamic selective kernel channel attention for medical image segmentation
por: Shen, Longfeng, et al.
Publicado: (2023) -
PCAT-UNet: UNet-like network fused convolution and transformer for retinal vessel segmentation
por: Chen, Danny, et al.
Publicado: (2022) -
A-DenseUNet: Adaptive Densely Connected UNet for Polyp Segmentation in Colonoscopy Images with Atrous Convolution
por: Safarov, Sirojbek, et al.
Publicado: (2021)