Cargando…
Evaluation of colorectal cancer subtypes and cell lines using deep learning
Colorectal cancer (CRC) is a common cancer with a high mortality rate and a rising incidence rate in the developed world. Molecular profiling techniques have been used to better understand the variability between tumors and disease models such as cell lines. To maximize the translatability and clini...
Autores principales: | Ronen, Jonathan, Hayat, Sikander, Akalin, Altuna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Life Science Alliance LLC
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892438/ https://www.ncbi.nlm.nih.gov/pubmed/31792061 http://dx.doi.org/10.26508/lsa.201900517 |
Ejemplares similares
-
Identifying tumor cells at the single-cell level using machine learning
por: Dohmen, Jan, et al.
Publicado: (2022) -
netSmooth: Network-smoothing based imputation for single cell RNA-seq
por: Ronen, Jonathan, et al.
Publicado: (2018) -
Deep learning for genomics using Janggu
por: Kopp, Wolfgang, et al.
Publicado: (2020) -
RCAS: an RNA centric annotation system for transcriptome-wide regions of interest
por: Uyar, Bora, et al.
Publicado: (2017) -
BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes
por: Wang, Tongxin, et al.
Publicado: (2019)