Cargando…
Deep Learning Algorithm for Automated Diagnosis of Retinopathy of Prematurity Plus Disease
PURPOSE: This study describes the initial development of a deep learning algorithm, ROP.AI, to automatically diagnose retinopathy of prematurity (ROP) plus disease in fundal images. METHODS: ROP.AI was trained using 6974 fundal images from Australasian image databases. Each image was given a diagnos...
Autores principales: | Tan, Zachary, Simkin, Samantha, Lai, Connie, Dai, Shuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892443/ https://www.ncbi.nlm.nih.gov/pubmed/31819832 http://dx.doi.org/10.1167/tvst.8.6.23 |
Ejemplares similares
-
Multicenter Validation of Deep Learning Algorithm ROP.AI for the Automated Diagnosis of Plus Disease in ROP
por: Bai, Amelia, et al.
Publicado: (2023) -
Retinopathy of prematurity screening: A narrative review of current programs, teleophthalmology, and diagnostic support systems
por: Tan, Zachary, et al.
Publicado: (2022) -
Performance of deep-learning artificial intelligence algorithms in detecting retinopathy of prematurity: A systematic review
por: Bai, Amelia, et al.
Publicado: (2022) -
Incomplete peripheral retinal vascularisation in retinopathy of prematurity: is it the consequence of changing oxygen saturation?
por: Yehiam, Sigal Zmujack, et al.
Publicado: (2023) -
Automated identification of retinopathy of prematurity by image-based deep learning
por: Tong, Yan, et al.
Publicado: (2020)