Cargando…
Analysing trajectories of a longitudinal exposure: A causal perspective on common methods in lifecourse research
Longitudinal data is commonly analysed to inform prevention policies for diseases that may develop throughout life. Commonly methods interpret the longitudinal data as a series of discrete measurements or as continuous patterns. Some of the latter methods condition on the outcome, aiming to capture...
Autores principales: | Gadd, Sarah C., Tennant, Peter W. G., Heppenstall, Alison J., Boehnke, Jan R., Gilthorpe, Mark S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892534/ https://www.ncbi.nlm.nih.gov/pubmed/31800576 http://dx.doi.org/10.1371/journal.pone.0225217 |
Ejemplares similares
-
Adjustment for time-invariant and time-varying confounders in
‘unexplained residuals’ models for longitudinal data within a causal framework
and associated challenges
por: Arnold, KF, et al.
Publicado: (2018) -
Adjustment for energy intake in nutritional research: a causal inference perspective
por: Tomova, Georgia D, et al.
Publicado: (2021) -
A causal inference perspective on the analysis of compositional data
por: Arnold, Kellyn F, et al.
Publicado: (2020) -
Analyses of ‘change scores’ do not estimate causal effects in observational data
por: Tennant, Peter W G, et al.
Publicado: (2021) -
Lifecourse Childhood Adiposity Trajectories Associated With Adolescent Insulin Resistance
por: Huang, Rae-Chi, et al.
Publicado: (2011)