Cargando…

Modeling narrative structure and dynamics with networks, sentiment analysis, and topic modeling

Human communication is invariably executed in the form of a narrative, an account of connected events comprising characters, actions, and settings. A coherent and well-structured narrative is therefore essential for effective communication, confusion caused by a haphazard attempt at storytelling bei...

Descripción completa

Detalles Bibliográficos
Autores principales: Min, Semi, Park, Juyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892538/
https://www.ncbi.nlm.nih.gov/pubmed/31800635
http://dx.doi.org/10.1371/journal.pone.0226025
Descripción
Sumario:Human communication is invariably executed in the form of a narrative, an account of connected events comprising characters, actions, and settings. A coherent and well-structured narrative is therefore essential for effective communication, confusion caused by a haphazard attempt at storytelling being a common experience. This also suggests that a scientific understanding of how a narrative is formed and delivered is key to understanding human communication and dialog. Here we show that the definition of a narrative lends itself naturally to network-based modeling and analysis, and they can be further enriched by incorporating various text analysis methods from computational linguistics. We model the temporally unfolding nature of narrative as a dynamical growing network of nodes and edges representing characters and interactions, which allows us to characterize the story progression using the network growth pattern. We also introduce the concept of an interaction map between characters based on associated sentiments and topics identified from the text that characterize their relationships explicitly. We demonstrate the methods via application to Victor Hugo’s Les Misérables. Going beyond simple, aggregate occurrence-based methods for narrative representation and analysis, our proposed methods show promise in uncovering its essential nature of a highly complex, dynamic system that reflects the rich structure of human interaction and communication.