Cargando…
Carbon-nanotube reinforcement of DNA-silica nanocomposites yields programmable and cell-instructive biocoatings
Biomedical applications require substrata that allow for the grafting, colonization and control of eukaryotic cells. Currently available materials are often limited by insufficient possibilities for the integration of biological functions and means for tuning the mechanical properties. We report on...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892801/ https://www.ncbi.nlm.nih.gov/pubmed/31797918 http://dx.doi.org/10.1038/s41467-019-13381-1 |
_version_ | 1783476083326189568 |
---|---|
author | Hu, Yong Domínguez, Carmen M. Bauer, Jens Weigel, Simone Schipperges, Alessa Oelschlaeger, Claude Willenbacher, Norbert Keppler, Stephan Bastmeyer, Martin Heißler, Stefan Wöll, Christof Scharnweber, Tim Rabe, Kersten S. Niemeyer, Christof M. |
author_facet | Hu, Yong Domínguez, Carmen M. Bauer, Jens Weigel, Simone Schipperges, Alessa Oelschlaeger, Claude Willenbacher, Norbert Keppler, Stephan Bastmeyer, Martin Heißler, Stefan Wöll, Christof Scharnweber, Tim Rabe, Kersten S. Niemeyer, Christof M. |
author_sort | Hu, Yong |
collection | PubMed |
description | Biomedical applications require substrata that allow for the grafting, colonization and control of eukaryotic cells. Currently available materials are often limited by insufficient possibilities for the integration of biological functions and means for tuning the mechanical properties. We report on tailorable nanocomposite materials in which silica nanoparticles are interwoven with carbon nanotubes by DNA polymerization. The modular, well controllable and scalable synthesis yields materials whose composition can be gradually adjusted to produce synergistic, non-linear mechanical stiffness and viscosity properties. The materials were exploited as substrata that outperform conventional culture surfaces in the ability to control cellular adhesion, proliferation and transmigration through the hydrogel matrix. The composite materials also enable the construction of layered cell architectures, the expansion of embryonic stem cells by simplified cultivation methods and the on-demand release of uniformly sized stem cell spheroids. |
format | Online Article Text |
id | pubmed-6892801 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-68928012019-12-06 Carbon-nanotube reinforcement of DNA-silica nanocomposites yields programmable and cell-instructive biocoatings Hu, Yong Domínguez, Carmen M. Bauer, Jens Weigel, Simone Schipperges, Alessa Oelschlaeger, Claude Willenbacher, Norbert Keppler, Stephan Bastmeyer, Martin Heißler, Stefan Wöll, Christof Scharnweber, Tim Rabe, Kersten S. Niemeyer, Christof M. Nat Commun Article Biomedical applications require substrata that allow for the grafting, colonization and control of eukaryotic cells. Currently available materials are often limited by insufficient possibilities for the integration of biological functions and means for tuning the mechanical properties. We report on tailorable nanocomposite materials in which silica nanoparticles are interwoven with carbon nanotubes by DNA polymerization. The modular, well controllable and scalable synthesis yields materials whose composition can be gradually adjusted to produce synergistic, non-linear mechanical stiffness and viscosity properties. The materials were exploited as substrata that outperform conventional culture surfaces in the ability to control cellular adhesion, proliferation and transmigration through the hydrogel matrix. The composite materials also enable the construction of layered cell architectures, the expansion of embryonic stem cells by simplified cultivation methods and the on-demand release of uniformly sized stem cell spheroids. Nature Publishing Group UK 2019-12-04 /pmc/articles/PMC6892801/ /pubmed/31797918 http://dx.doi.org/10.1038/s41467-019-13381-1 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Hu, Yong Domínguez, Carmen M. Bauer, Jens Weigel, Simone Schipperges, Alessa Oelschlaeger, Claude Willenbacher, Norbert Keppler, Stephan Bastmeyer, Martin Heißler, Stefan Wöll, Christof Scharnweber, Tim Rabe, Kersten S. Niemeyer, Christof M. Carbon-nanotube reinforcement of DNA-silica nanocomposites yields programmable and cell-instructive biocoatings |
title | Carbon-nanotube reinforcement of DNA-silica nanocomposites yields programmable and cell-instructive biocoatings |
title_full | Carbon-nanotube reinforcement of DNA-silica nanocomposites yields programmable and cell-instructive biocoatings |
title_fullStr | Carbon-nanotube reinforcement of DNA-silica nanocomposites yields programmable and cell-instructive biocoatings |
title_full_unstemmed | Carbon-nanotube reinforcement of DNA-silica nanocomposites yields programmable and cell-instructive biocoatings |
title_short | Carbon-nanotube reinforcement of DNA-silica nanocomposites yields programmable and cell-instructive biocoatings |
title_sort | carbon-nanotube reinforcement of dna-silica nanocomposites yields programmable and cell-instructive biocoatings |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892801/ https://www.ncbi.nlm.nih.gov/pubmed/31797918 http://dx.doi.org/10.1038/s41467-019-13381-1 |
work_keys_str_mv | AT huyong carbonnanotubereinforcementofdnasilicananocompositesyieldsprogrammableandcellinstructivebiocoatings AT dominguezcarmenm carbonnanotubereinforcementofdnasilicananocompositesyieldsprogrammableandcellinstructivebiocoatings AT bauerjens carbonnanotubereinforcementofdnasilicananocompositesyieldsprogrammableandcellinstructivebiocoatings AT weigelsimone carbonnanotubereinforcementofdnasilicananocompositesyieldsprogrammableandcellinstructivebiocoatings AT schippergesalessa carbonnanotubereinforcementofdnasilicananocompositesyieldsprogrammableandcellinstructivebiocoatings AT oelschlaegerclaude carbonnanotubereinforcementofdnasilicananocompositesyieldsprogrammableandcellinstructivebiocoatings AT willenbachernorbert carbonnanotubereinforcementofdnasilicananocompositesyieldsprogrammableandcellinstructivebiocoatings AT kepplerstephan carbonnanotubereinforcementofdnasilicananocompositesyieldsprogrammableandcellinstructivebiocoatings AT bastmeyermartin carbonnanotubereinforcementofdnasilicananocompositesyieldsprogrammableandcellinstructivebiocoatings AT heißlerstefan carbonnanotubereinforcementofdnasilicananocompositesyieldsprogrammableandcellinstructivebiocoatings AT wollchristof carbonnanotubereinforcementofdnasilicananocompositesyieldsprogrammableandcellinstructivebiocoatings AT scharnwebertim carbonnanotubereinforcementofdnasilicananocompositesyieldsprogrammableandcellinstructivebiocoatings AT rabekerstens carbonnanotubereinforcementofdnasilicananocompositesyieldsprogrammableandcellinstructivebiocoatings AT niemeyerchristofm carbonnanotubereinforcementofdnasilicananocompositesyieldsprogrammableandcellinstructivebiocoatings |