Cargando…
DeepSynth: Three-dimensional nuclear segmentation of biological images using neural networks trained with synthetic data
The scale of biological microscopy has increased dramatically over the past ten years, with the development of new modalities supporting collection of high-resolution fluorescence image volumes spanning hundreds of microns if not millimeters. The size and complexity of these volumes is such that qua...
Autores principales: | Dunn, Kenneth W., Fu, Chichen, Ho, David Joon, Lee, Soonam, Han, Shuo, Salama, Paul, Delp, Edward J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892824/ https://www.ncbi.nlm.nih.gov/pubmed/31797882 http://dx.doi.org/10.1038/s41598-019-54244-5 |
Ejemplares similares
-
NISNet3D: three-dimensional nuclear synthesis and instance segmentation for fluorescence microscopy images
por: Wu, Liming, et al.
Publicado: (2023) -
SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining
por: Billot, Benjamin, et al.
Publicado: (2023) -
Generating Synthetic Radiological Images with PySynthMRI: An Open-Source Cross-Platform Tool
por: Peretti, Luca, et al.
Publicado: (2023) -
Development and validation of a deep learning-based automatic segmentation model for assessing intracranial volume: comparison with NeuroQuant, FreeSurfer, and SynthSeg
por: Suh, Pae Sun, et al.
Publicado: (2023) -
SynthStrip: skull-stripping for any brain image
por: Hoopes, Andrew, et al.
Publicado: (2022)