Cargando…
Optimising dual-energy CT scan parameters for virtual non-calcium imaging of the bone marrow: a phantom study
BACKGROUND: We investigated the influence of dose, spectral separation, pitch, rotation time, and reconstruction kernel on accuracy and image noise of virtual non-calcium images using a bone marrow phantom. METHODS: The phantom was developed at our institution and scanned using a third-generation du...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892987/ https://www.ncbi.nlm.nih.gov/pubmed/31802305 http://dx.doi.org/10.1186/s41747-019-0125-2 |
_version_ | 1783476128047955968 |
---|---|
author | Müller, Felix C. Børgesen, Henrik Gosvig, Kasper Rodell, Anders Booz, Christian Schmidt, Bernhard Krauss, Bernhard Boesen, Mikael |
author_facet | Müller, Felix C. Børgesen, Henrik Gosvig, Kasper Rodell, Anders Booz, Christian Schmidt, Bernhard Krauss, Bernhard Boesen, Mikael |
author_sort | Müller, Felix C. |
collection | PubMed |
description | BACKGROUND: We investigated the influence of dose, spectral separation, pitch, rotation time, and reconstruction kernel on accuracy and image noise of virtual non-calcium images using a bone marrow phantom. METHODS: The phantom was developed at our institution and scanned using a third-generation dual-source dual-energy CT scanner at five different spectral separations by varying the tube-voltage combinations (70 kV/Sn150 kV, 80 kV/Sn150 kV, 90 kV/Sn150 kV, and 100 kV/Sn150 kV, all with 0.6-mm tin filter [Sn]; 80 kV/140 kV without tin filter) at six different doses (volume computed tomography dose index from 1 to 80 mGy). In separate experiments, rotation times, pitch, and reconstruction kernels were varied at a constant dose and tube voltage. Accuracy was determined by measuring the mean error between virtual non-calcium values in the fluid within and outside of the bone. Image noise was defined as the standard deviation of virtual non-calcium values. RESULTS: Spectral separation, dose, rotation time, or pitch did not significantly correlate (p > 0.083) with mean error. Increased spectral separation (r(s)-0.96, p < 0.001) and increased dose (r(s)-0.98, p < 0.001) correlated significantly with decreased image noise. Increasing sharpness of the reconstruction kernel correlated with mean error (r(s) 0.83, p = 0.015) and image noise (r(s) 1.0, p < 0.001). CONCLUSIONS: Increased dose and increased spectral separation significantly lowered image noise in virtual non-calcium images but did not affect the accuracy. Virtual non-calcium reconstructions with similar accuracy and image noise could be achieved at a lower tube-voltage difference by increasing the dose. |
format | Online Article Text |
id | pubmed-6892987 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-68929872019-12-19 Optimising dual-energy CT scan parameters for virtual non-calcium imaging of the bone marrow: a phantom study Müller, Felix C. Børgesen, Henrik Gosvig, Kasper Rodell, Anders Booz, Christian Schmidt, Bernhard Krauss, Bernhard Boesen, Mikael Eur Radiol Exp Original Article BACKGROUND: We investigated the influence of dose, spectral separation, pitch, rotation time, and reconstruction kernel on accuracy and image noise of virtual non-calcium images using a bone marrow phantom. METHODS: The phantom was developed at our institution and scanned using a third-generation dual-source dual-energy CT scanner at five different spectral separations by varying the tube-voltage combinations (70 kV/Sn150 kV, 80 kV/Sn150 kV, 90 kV/Sn150 kV, and 100 kV/Sn150 kV, all with 0.6-mm tin filter [Sn]; 80 kV/140 kV without tin filter) at six different doses (volume computed tomography dose index from 1 to 80 mGy). In separate experiments, rotation times, pitch, and reconstruction kernels were varied at a constant dose and tube voltage. Accuracy was determined by measuring the mean error between virtual non-calcium values in the fluid within and outside of the bone. Image noise was defined as the standard deviation of virtual non-calcium values. RESULTS: Spectral separation, dose, rotation time, or pitch did not significantly correlate (p > 0.083) with mean error. Increased spectral separation (r(s)-0.96, p < 0.001) and increased dose (r(s)-0.98, p < 0.001) correlated significantly with decreased image noise. Increasing sharpness of the reconstruction kernel correlated with mean error (r(s) 0.83, p = 0.015) and image noise (r(s) 1.0, p < 0.001). CONCLUSIONS: Increased dose and increased spectral separation significantly lowered image noise in virtual non-calcium images but did not affect the accuracy. Virtual non-calcium reconstructions with similar accuracy and image noise could be achieved at a lower tube-voltage difference by increasing the dose. Springer International Publishing 2019-12-04 /pmc/articles/PMC6892987/ /pubmed/31802305 http://dx.doi.org/10.1186/s41747-019-0125-2 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Article Müller, Felix C. Børgesen, Henrik Gosvig, Kasper Rodell, Anders Booz, Christian Schmidt, Bernhard Krauss, Bernhard Boesen, Mikael Optimising dual-energy CT scan parameters for virtual non-calcium imaging of the bone marrow: a phantom study |
title | Optimising dual-energy CT scan parameters for virtual non-calcium imaging of the bone marrow: a phantom study |
title_full | Optimising dual-energy CT scan parameters for virtual non-calcium imaging of the bone marrow: a phantom study |
title_fullStr | Optimising dual-energy CT scan parameters for virtual non-calcium imaging of the bone marrow: a phantom study |
title_full_unstemmed | Optimising dual-energy CT scan parameters for virtual non-calcium imaging of the bone marrow: a phantom study |
title_short | Optimising dual-energy CT scan parameters for virtual non-calcium imaging of the bone marrow: a phantom study |
title_sort | optimising dual-energy ct scan parameters for virtual non-calcium imaging of the bone marrow: a phantom study |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892987/ https://www.ncbi.nlm.nih.gov/pubmed/31802305 http://dx.doi.org/10.1186/s41747-019-0125-2 |
work_keys_str_mv | AT mullerfelixc optimisingdualenergyctscanparametersforvirtualnoncalciumimagingofthebonemarrowaphantomstudy AT børgesenhenrik optimisingdualenergyctscanparametersforvirtualnoncalciumimagingofthebonemarrowaphantomstudy AT gosvigkasper optimisingdualenergyctscanparametersforvirtualnoncalciumimagingofthebonemarrowaphantomstudy AT rodellanders optimisingdualenergyctscanparametersforvirtualnoncalciumimagingofthebonemarrowaphantomstudy AT boozchristian optimisingdualenergyctscanparametersforvirtualnoncalciumimagingofthebonemarrowaphantomstudy AT schmidtbernhard optimisingdualenergyctscanparametersforvirtualnoncalciumimagingofthebonemarrowaphantomstudy AT kraussbernhard optimisingdualenergyctscanparametersforvirtualnoncalciumimagingofthebonemarrowaphantomstudy AT boesenmikael optimisingdualenergyctscanparametersforvirtualnoncalciumimagingofthebonemarrowaphantomstudy |