Cargando…
Deterministic networks for probabilistic computing
Neuronal network models of high-level brain functions such as memory recall and reasoning often rely on the presence of some form of noise. The majority of these models assumes that each neuron in the functional network is equipped with its own private source of randomness, often in the form of unco...
Autores principales: | Jordan, Jakob, Petrovici, Mihai A., Breitwieser, Oliver, Schemmel, Johannes, Meier, Karlheinz, Diesmann, Markus, Tetzlaff, Tom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6893033/ https://www.ncbi.nlm.nih.gov/pubmed/31797943 http://dx.doi.org/10.1038/s41598-019-54137-7 |
Ejemplares similares
-
Deterministic neural networks as sources of uncorrelated noise for probabilistic computations
por: Jordan, Jakob, et al.
Publicado: (2015) -
Probabilistic inference in discrete spaces can be implemented into networks of LIF neurons
por: Probst, Dimitri, et al.
Publicado: (2015) -
Spiking neurons with short-term synaptic plasticity form superior generative networks
por: Leng, Luziwei, et al.
Publicado: (2018) -
Coherent noise enables probabilistic sequence replay in spiking neuronal networks
por: Bouhadjar, Younes, et al.
Publicado: (2023) -
The high-conductance state enables neural sampling in networks of LIF neurons
por: Petrovici, Mihai A, et al.
Publicado: (2015)