Cargando…

OsSPL10, a SBP-Box Gene, Plays a Dual Role in Salt Tolerance and Trichome Formation in Rice (Oryza sativa L.)

Salinity is one of the major abiotic stress factors limiting rice production. Glabrousness is a trait of agronomic importance in rice (Oryza sativa L.). We previously found a single-gene recessive mutant sst, which displayed increased salt tolerance and glabrous leaf and glume without trichomes, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Lan, Tao, Zheng, Yali, Su, Zilong, Yu, Shibo, Song, Haibing, Zheng, Xiaoya, Lin, Gege, Wu, Weiren
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6893181/
https://www.ncbi.nlm.nih.gov/pubmed/31611344
http://dx.doi.org/10.1534/g3.119.400700
Descripción
Sumario:Salinity is one of the major abiotic stress factors limiting rice production. Glabrousness is a trait of agronomic importance in rice (Oryza sativa L.). We previously found a single-gene recessive mutant sst, which displayed increased salt tolerance and glabrous leaf and glume without trichomes, and identified an SBP-box gene OsSPL10 as the candidate of the SST gene. In this study, OsSPL10-knockout and OsSPL10-overexpression mutants were created to check the function of the gene. The knockout mutants exhibited enhanced salt tolerance and glabrous leaves and glumes as expected, while the overexpression mutants showed opposite phenotypes, in which both salt sensitivity and trichome density on leaf and glume were increased. These results clearly confirmed that OsSPL10 is SST, and suggested that OsSPL10 controls the initiation rather than the elongation of trichomes. In addition, expression analysis indicated that OsSPL10 was preferentially expressed in young panicle and stem, and protein OsSPL10 was localized in nucleus. Taken together, OsSPL10 negatively controls salt tolerance but positively controls trichome formation in rice.