Cargando…

Frustration and fidelity in influenza genome assembly

The genome of the influenza virus consists of eight distinct single-stranded RNA segments, each encoding proteins essential for the viral life cycle. When the virus infects a host cell, these segments must be replicated and packaged into new budding virions. The viral genome is assembled with remark...

Descripción completa

Detalles Bibliográficos
Autores principales: Farheen, Nida, Thattai, Mukund
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6893499/
https://www.ncbi.nlm.nih.gov/pubmed/31690232
http://dx.doi.org/10.1098/rsif.2019.0411
Descripción
Sumario:The genome of the influenza virus consists of eight distinct single-stranded RNA segments, each encoding proteins essential for the viral life cycle. When the virus infects a host cell, these segments must be replicated and packaged into new budding virions. The viral genome is assembled with remarkably high fidelity: experiments reveal that most virions contain precisely one copy of each of the eight RNA segments. Cell-biological studies suggest that genome assembly is mediated by specific reversible and irreversible interactions between the RNA segments and their associated proteins. However, the precise inter-segment interaction network remains unresolved. Here, we computationally predict that tree-like irreversible interaction networks guarantee high-fidelity genome assembly, while cyclic interaction networks lead to futile or frustrated off-pathway products. We test our prediction against multiple experimental datasets. We find that tree-like networks capture the nearest-neighbour statistics of RNA segments in packaged virions, as observed by electron tomography. Just eight tree-like networks (of a possible 262 144) optimally capture both the nearest-neighbour data and independently measured RNA–RNA binding and co-localization propensities. These eight do not include the previously proposed hub-and-spoke and linear networks. Rather, each predicted network combines hub-like and linear features, consistent with evolutionary models of interaction gain and loss.