Cargando…
Improving rare disease classification using imperfect knowledge graph
BACKGROUND: Accurately recognizing rare diseases based on symptom description is an important task in patient triage, early risk stratification, and target therapies. However, due to the very nature of rare diseases, the lack of historical data poses a great challenge to machine learning-based appro...
Autores principales: | Li, Xuedong, Wang, Yue, Wang, Dongwu, Yuan, Walter, Peng, Dezhong, Mei, Qiaozhu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894101/ https://www.ncbi.nlm.nih.gov/pubmed/31801534 http://dx.doi.org/10.1186/s12911-019-0938-1 |
Ejemplares similares
-
When BERT meets Bilbo: a learning curve analysis of pretrained language model on disease classification
por: Li, Xuedong, et al.
Publicado: (2022) -
Improving patient self-description in Chinese online consultation using contextual prompts
por: Li, Xuedong, et al.
Publicado: (2022) -
Rare disease-based scientific annotation knowledge graph
por: Zhu, Qian, et al.
Publicado: (2022) -
Clustering rare diseases within an ontology-enriched knowledge graph
por: Sanjak, Jaleal, et al.
Publicado: (2023) -
Improved Graph Embedding for Robust Recognition with outliers
por: Li, Peiyang, et al.
Publicado: (2018)