Cargando…
Combining entity co-occurrence with specialized word embeddings to measure entity relation in Alzheimer’s disease
BACKGROUND: Extracting useful information from biomedical literature plays an important role in the development of modern medicine. In natural language processing, there have been rigorous attempts to find meaningful relationships between entities automatically by co-occurrence-based methods. It has...
Autores principales: | Heo, Go Eun, Xie, Qing, Song, Min, Lee, Jeong-Hoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894106/ https://www.ncbi.nlm.nih.gov/pubmed/31801521 http://dx.doi.org/10.1186/s12911-019-0934-5 |
Ejemplares similares
-
Comparing general and specialized word embeddings for biomedical named entity recognition
por: Ramos-Vargas, Rigo E., et al.
Publicado: (2021) -
Joint Word and Entity Embeddings for Entity Retrieval from a Knowledge Graph
por: Nikolaev, Fedor, et al.
Publicado: (2020) -
Combining word embeddings to extract chemical and drug entities in biomedical literature
por: López-Úbeda, Pilar, et al.
Publicado: (2021) -
Deep learning with word embeddings improves biomedical named entity recognition
por: Habibi, Maryam, et al.
Publicado: (2017) -
Linking entities through an ontology using word embeddings and syntactic re-ranking
por: Karadeniz, İlknur, et al.
Publicado: (2019)