Cargando…
Applying a deep learning-based sequence labeling approach to detect attributes of medical concepts in clinical text
BACKGROUND: To detect attributes of medical concepts in clinical text, a traditional method often consists of two steps: named entity recognition of attributes and then relation classification between medical concepts and attributes. Here we present a novel solution, in which attribute detection of...
Autores principales: | Xu, Jun, Li, Zhiheng, Wei, Qiang, Wu, Yonghui, Xiang, Yang, Lee, Hee-Jin, Zhang, Yaoyun, Wu, Stephen, Xu, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894107/ https://www.ncbi.nlm.nih.gov/pubmed/31801529 http://dx.doi.org/10.1186/s12911-019-0937-2 |
Ejemplares similares
-
Integrating shortest dependency path and sentence sequence into a deep learning framework for relation extraction in clinical text
por: Li, Zhiheng, et al.
Publicado: (2019) -
Parsing clinical text using the state-of-the-art deep learning based parsers: a systematic comparison
por: Zhang, Yaoyun, et al.
Publicado: (2019) -
Time-sensitive clinical concept embeddings learned from large electronic health records
por: Xiang, Yang, et al.
Publicado: (2019) -
Exploiting sequence labeling framework to extract document-level relations from biomedical texts
por: Li, Zhiheng, et al.
Publicado: (2020) -
DLI-IT: a deep learning approach to drug label identification through image and text embedding
por: Liu, Xiangwen, et al.
Publicado: (2020)