Cargando…

Potential yields and emission reductions of biojet fuels produced via hydrotreatment of biocrudes produced through direct thermochemical liquefaction

BACKGROUND: The hydrotreatment of oleochemical/lipid feedstocks is currently the only technology that provides significant volumes (millions of litres per year) of “conventional” biojet/sustainable aviation fuels (SAF). However, if biojet fuels are to be produced in sustainably sourced volumes (bill...

Descripción completa

Detalles Bibliográficos
Autores principales: van Dyk, Susan, Su, Jianping, Ebadian, Mahmood, O’Connor, Don, Lakeman, Michael, Saddler, Jack (John)
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894131/
https://www.ncbi.nlm.nih.gov/pubmed/31827609
http://dx.doi.org/10.1186/s13068-019-1625-2
Descripción
Sumario:BACKGROUND: The hydrotreatment of oleochemical/lipid feedstocks is currently the only technology that provides significant volumes (millions of litres per year) of “conventional” biojet/sustainable aviation fuels (SAF). However, if biojet fuels are to be produced in sustainably sourced volumes (billions of litres per year) at a price comparable with fossil jet fuel, biomass-derived “advanced” biojet fuels will be needed. Three direct thermochemical liquefaction technologies, fast pyrolysis, catalytic fast pyrolysis and hydrothermal liquefaction were assessed for their potential to produce “biocrudes” which were subsequently upgraded to drop-in biofuels by either dedicated hydrotreatment or co-processed hydrotreatment. RESULTS: A significant biojet fraction (between 20.8 and 36.6% of total upgraded fuel volume) was produced by all of the processes. When the fractions were assessed against general ASTM D7566 specifications they showed significant compliance, despite a lack of optimization in any of the process steps. When the life cycle analysis GHGenius model was used to assess the carbon intensity of the various products, significant emission reductions (up to 74%) could be achieved. CONCLUSIONS: It was apparent that the production of biojet fuels based on direct thermochemical liquefaction of biocrudes, followed by hydrotreating, has considerable potential.