Cargando…
Design and Synthesis of Gold-Gadolinium-Core-Shell Nanoparticles as Contrast Agent: a Smart Way to Future Nanomaterials for Nanomedicine Applications
INTRODUCTION: The development of biopolymers for the synthesis of Gd(III) nanoparticles, as therapeutics, could play a key role in nanomedicine. Biocompatible polymers are not only used for complex monovalent biomolecules, but also for the realization of multivalent active targeting materials as dia...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894158/ https://www.ncbi.nlm.nih.gov/pubmed/31819433 http://dx.doi.org/10.2147/IJN.S224805 |
_version_ | 1783476336302489600 |
---|---|
author | Aouidat, Fatima Boumati, Sarah Khan, Memona Tielens, Frederik Doan, Bich-Thuy Spadavecchia, Jolanda |
author_facet | Aouidat, Fatima Boumati, Sarah Khan, Memona Tielens, Frederik Doan, Bich-Thuy Spadavecchia, Jolanda |
author_sort | Aouidat, Fatima |
collection | PubMed |
description | INTRODUCTION: The development of biopolymers for the synthesis of Gd(III) nanoparticles, as therapeutics, could play a key role in nanomedicine. Biocompatible polymers are not only used for complex monovalent biomolecules, but also for the realization of multivalent active targeting materials as diagnostic and/or therapeutic hybrid nanoparticles. In this article, it was reported for the first time, a novel synthesis of Gd(III)–biopolymer–Au(III) complex, acting as a key ingredient of core-shell gold nanoparticles (Gd(@AuNPs). MATERIAL AND METHODS: The physical and chemical evaluation was carried out by spectroscopic analytical techniques (Raman spectroscopy, UV-visible and TEM). The theoretical characterization by DFT (density functional theory) analysis was carried out under specific conditions to investigate the interaction between the Au and the Gd precursors, during the first nucleation step. Magnetic features with relaxivity measurements at 7T were also performed as well as cytotoxicity studies on hepatocyte cell lines for biocompatibility studies. The in vivo detailed dynamic biodistribution studies in mice to characterize the potential applications for biology as MRI contrast agents were then achieved. RESULTS: Physical–chemical evaluation confirms the successful design and reaction supposed. Viabilities of TIB-75 (hepatocytes) cells were evaluated using Alamar blue cytotoxic tests with increasing concentrations of nanoparticles. In vivo biodistribution studies were then accomplished to assess the kinetic behavior of the nanoparticles in mice and characterize their stealthiness property after intravenous injection. CONCLUSION: We demonstrated that Gd@AuNPs have some advantages to display hepatocytes in the liver. Particularly, these nanoconjugates give a good cellular uptake of several quantities of Gd@NPs into cells, while preserving a T1 contrast inside cells that provide a robust in vivo detection using T1-weighted MR images. These results will strengthen the role of gadolinium as complex to gold in order to tune Gd(@AuNPs) as an innovative diagnostic agent in the field of nanomedicine. |
format | Online Article Text |
id | pubmed-6894158 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-68941582019-12-09 Design and Synthesis of Gold-Gadolinium-Core-Shell Nanoparticles as Contrast Agent: a Smart Way to Future Nanomaterials for Nanomedicine Applications Aouidat, Fatima Boumati, Sarah Khan, Memona Tielens, Frederik Doan, Bich-Thuy Spadavecchia, Jolanda Int J Nanomedicine Original Research INTRODUCTION: The development of biopolymers for the synthesis of Gd(III) nanoparticles, as therapeutics, could play a key role in nanomedicine. Biocompatible polymers are not only used for complex monovalent biomolecules, but also for the realization of multivalent active targeting materials as diagnostic and/or therapeutic hybrid nanoparticles. In this article, it was reported for the first time, a novel synthesis of Gd(III)–biopolymer–Au(III) complex, acting as a key ingredient of core-shell gold nanoparticles (Gd(@AuNPs). MATERIAL AND METHODS: The physical and chemical evaluation was carried out by spectroscopic analytical techniques (Raman spectroscopy, UV-visible and TEM). The theoretical characterization by DFT (density functional theory) analysis was carried out under specific conditions to investigate the interaction between the Au and the Gd precursors, during the first nucleation step. Magnetic features with relaxivity measurements at 7T were also performed as well as cytotoxicity studies on hepatocyte cell lines for biocompatibility studies. The in vivo detailed dynamic biodistribution studies in mice to characterize the potential applications for biology as MRI contrast agents were then achieved. RESULTS: Physical–chemical evaluation confirms the successful design and reaction supposed. Viabilities of TIB-75 (hepatocytes) cells were evaluated using Alamar blue cytotoxic tests with increasing concentrations of nanoparticles. In vivo biodistribution studies were then accomplished to assess the kinetic behavior of the nanoparticles in mice and characterize their stealthiness property after intravenous injection. CONCLUSION: We demonstrated that Gd@AuNPs have some advantages to display hepatocytes in the liver. Particularly, these nanoconjugates give a good cellular uptake of several quantities of Gd@NPs into cells, while preserving a T1 contrast inside cells that provide a robust in vivo detection using T1-weighted MR images. These results will strengthen the role of gadolinium as complex to gold in order to tune Gd(@AuNPs) as an innovative diagnostic agent in the field of nanomedicine. Dove 2019-11-29 /pmc/articles/PMC6894158/ /pubmed/31819433 http://dx.doi.org/10.2147/IJN.S224805 Text en © 2019 Aouidat et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Aouidat, Fatima Boumati, Sarah Khan, Memona Tielens, Frederik Doan, Bich-Thuy Spadavecchia, Jolanda Design and Synthesis of Gold-Gadolinium-Core-Shell Nanoparticles as Contrast Agent: a Smart Way to Future Nanomaterials for Nanomedicine Applications |
title | Design and Synthesis of Gold-Gadolinium-Core-Shell Nanoparticles as Contrast Agent: a Smart Way to Future Nanomaterials for Nanomedicine Applications |
title_full | Design and Synthesis of Gold-Gadolinium-Core-Shell Nanoparticles as Contrast Agent: a Smart Way to Future Nanomaterials for Nanomedicine Applications |
title_fullStr | Design and Synthesis of Gold-Gadolinium-Core-Shell Nanoparticles as Contrast Agent: a Smart Way to Future Nanomaterials for Nanomedicine Applications |
title_full_unstemmed | Design and Synthesis of Gold-Gadolinium-Core-Shell Nanoparticles as Contrast Agent: a Smart Way to Future Nanomaterials for Nanomedicine Applications |
title_short | Design and Synthesis of Gold-Gadolinium-Core-Shell Nanoparticles as Contrast Agent: a Smart Way to Future Nanomaterials for Nanomedicine Applications |
title_sort | design and synthesis of gold-gadolinium-core-shell nanoparticles as contrast agent: a smart way to future nanomaterials for nanomedicine applications |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894158/ https://www.ncbi.nlm.nih.gov/pubmed/31819433 http://dx.doi.org/10.2147/IJN.S224805 |
work_keys_str_mv | AT aouidatfatima designandsynthesisofgoldgadoliniumcoreshellnanoparticlesascontrastagentasmartwaytofuturenanomaterialsfornanomedicineapplications AT boumatisarah designandsynthesisofgoldgadoliniumcoreshellnanoparticlesascontrastagentasmartwaytofuturenanomaterialsfornanomedicineapplications AT khanmemona designandsynthesisofgoldgadoliniumcoreshellnanoparticlesascontrastagentasmartwaytofuturenanomaterialsfornanomedicineapplications AT tielensfrederik designandsynthesisofgoldgadoliniumcoreshellnanoparticlesascontrastagentasmartwaytofuturenanomaterialsfornanomedicineapplications AT doanbichthuy designandsynthesisofgoldgadoliniumcoreshellnanoparticlesascontrastagentasmartwaytofuturenanomaterialsfornanomedicineapplications AT spadavecchiajolanda designandsynthesisofgoldgadoliniumcoreshellnanoparticlesascontrastagentasmartwaytofuturenanomaterialsfornanomedicineapplications |