Cargando…
Prediction of hospital no-show appointments through artificial intelligence algorithms
BACKGROUND: No-shows, a major issue for healthcare centers, can be quite costly and disruptive. Capacity is wasted and expensive resources are underutilized. Numerous studies have shown that reducing uncancelled missed appointments can have a tremendous impact, improving efficiency, reducing costs a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
King Faisal Specialist Hospital and Research Centre
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894458/ https://www.ncbi.nlm.nih.gov/pubmed/31804138 http://dx.doi.org/10.5144/0256-4947.2019.373 |
Sumario: | BACKGROUND: No-shows, a major issue for healthcare centers, can be quite costly and disruptive. Capacity is wasted and expensive resources are underutilized. Numerous studies have shown that reducing uncancelled missed appointments can have a tremendous impact, improving efficiency, reducing costs and improving patient outcomes. Strategies involving machine learning and artificial intelligence could provide a solution. OBJECTIVE: Use artificial intelligence to build a model that predicts no-shows for individual appointments. DESIGN: Predictive modeling. SETTING: Major tertiary care center. PATIENTS AND METHODS: All historic outpatient clinic scheduling data in the electronic medical record for a one-year period between 01 January 2014 and 31 December 2014 were used to independently build predictive models with JRip and Hoeffding tree algorithms. MAIN OUTCOME MEASURES: No show appointments. SAMPLE SIZE: 1 087 979 outpatient clinic appointments. RESULTS: The no show rate was 11.3% (123 299). The most important information-gain ranking for predicting no-shows in descending order were history of no shows (0.3596), appointment location (0.0323), and specialty (0.025). The following had very low information-gain ranking: age, day of the week, slot description, time of appointment, gender and nationality. Both JRip and Hoeffding algorithms yielded a reasonable degrees of accuracy 76.44% and 77.13%, respectively, with area under the curve indices at acceptable discrimination power for JRip at 0.776 and at 0.861 with excellent discrimination for Hoeffding trees. CONCLUSION: Appointments having high risk of no-shows can be predicted in real-time to set appropriate proactive interventions that reduce the negative impact of no-shows. LIMITATIONS: Single center. Only one year of data. CONFLICT OF INTEREST: None. |
---|