Cargando…
Prediction of hospital no-show appointments through artificial intelligence algorithms
BACKGROUND: No-shows, a major issue for healthcare centers, can be quite costly and disruptive. Capacity is wasted and expensive resources are underutilized. Numerous studies have shown that reducing uncancelled missed appointments can have a tremendous impact, improving efficiency, reducing costs a...
Autores principales: | AlMuhaideb, Sarab, Alswailem, Osama, Alsubaie, Nayef, Ferwana, Ibtihal, Alnajem, Afnan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
King Faisal Specialist Hospital and Research Centre
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894458/ https://www.ncbi.nlm.nih.gov/pubmed/31804138 http://dx.doi.org/10.5144/0256-4947.2019.373 |
Ejemplares similares
-
COVID-19 Intelligence-Driven Operational Response Platform: Experience of a Large Tertiary Multihospital System in the Middle East
por: Alswailem, Osama A., et al.
Publicado: (2021) -
Data-Driven Prediction for COVID-19 Severity in Hospitalized Patients
por: Alrajhi, Abdulrahman A., et al.
Publicado: (2022) -
Role of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in the evaluation of breast carcinoma: Indications and pitfalls with illustrative case examples
por: Abouzied, Moheieldin M., et al.
Publicado: (2020) -
Social capital dimensions are differentially associated with COVID-19 vaccinations, masks, and physical distancing
por: Ferwana, Ibtihal, et al.
Publicado: (2021) -
Predicting no-shows for dental appointments
por: Alabdulkarim, Yazeed, et al.
Publicado: (2022)