Cargando…
Privacy-protecting estimation of adjusted risk ratios using modified Poisson regression in multi-center studies
BACKGROUND: Multi-center studies can generate robust and generalizable evidence, but privacy considerations and legal restrictions often make it challenging or impossible to pool individual-level data across data-contributing sites. With binary outcomes, privacy-protecting distributed algorithms to...
Autores principales: | Shu, Di, Young, Jessica G., Toh, Sengwee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894462/ https://www.ncbi.nlm.nih.gov/pubmed/31805872 http://dx.doi.org/10.1186/s12874-019-0878-6 |
Ejemplares similares
-
Privacy-protecting multivariable-adjusted distributed regression analysis for multi-center pediatric study
por: Toh, Sengwee, et al.
Publicado: (2019) -
Combining distributed regression and propensity scores: a doubly privacy-protecting analytic method for multicenter research
por: Toh, Sengwee, et al.
Publicado: (2018) -
Adjusting for Berkson error in exposure in ordinary and conditional logistic regression and in Poisson regression
por: Oraby, Tamer, et al.
Publicado: (2023) -
Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: application and simulation
por: Aladeitan, Benedicta B., et al.
Publicado: (2021) -
Biased Adjusted Poisson Ridge Estimators-Method and Application
por: Qasim, Muhammad, et al.
Publicado: (2020)