Cargando…

Posterior-based proposals for speeding up Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is widely used for Bayesian inference in models of complex systems. Performance, however, is often unsatisfactory in models with many latent variables due to so-called poor mixing, necessitating the development of application-specific implementations. This paper intro...

Descripción completa

Detalles Bibliográficos
Autores principales: Pooley, C. M., Bishop, S. C., Doeschl-Wilson, A., Marion, G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894579/
https://www.ncbi.nlm.nih.gov/pubmed/31827823
http://dx.doi.org/10.1098/rsos.190619
_version_ 1783476407817469952
author Pooley, C. M.
Bishop, S. C.
Doeschl-Wilson, A.
Marion, G.
author_facet Pooley, C. M.
Bishop, S. C.
Doeschl-Wilson, A.
Marion, G.
author_sort Pooley, C. M.
collection PubMed
description Markov chain Monte Carlo (MCMC) is widely used for Bayesian inference in models of complex systems. Performance, however, is often unsatisfactory in models with many latent variables due to so-called poor mixing, necessitating the development of application-specific implementations. This paper introduces ‘posterior-based proposals' (PBPs), a new type of MCMC update applicable to a huge class of statistical models (whose conditional dependence structures are represented by directed acyclic graphs). PBPs generate large joint updates in parameter and latent variable space, while retaining good acceptance rates (typically 33%). Evaluation against other approaches (from standard Gibbs/random walk updates to state-of-the-art Hamiltonian and particle MCMC methods) was carried out for widely varying model types: an individual-based model for disease diagnostic test data, a financial stochastic volatility model, a mixed model used in statistical genetics and a population model used in ecology. While different methods worked better or worse in different scenarios, PBPs were found to be either near to the fastest or significantly faster than the next best approach (by up to a factor of 10). PBPs, therefore, represent an additional general purpose technique that can be usefully applied in a wide variety of contexts.
format Online
Article
Text
id pubmed-6894579
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-68945792019-12-11 Posterior-based proposals for speeding up Markov chain Monte Carlo Pooley, C. M. Bishop, S. C. Doeschl-Wilson, A. Marion, G. R Soc Open Sci Mathematics Markov chain Monte Carlo (MCMC) is widely used for Bayesian inference in models of complex systems. Performance, however, is often unsatisfactory in models with many latent variables due to so-called poor mixing, necessitating the development of application-specific implementations. This paper introduces ‘posterior-based proposals' (PBPs), a new type of MCMC update applicable to a huge class of statistical models (whose conditional dependence structures are represented by directed acyclic graphs). PBPs generate large joint updates in parameter and latent variable space, while retaining good acceptance rates (typically 33%). Evaluation against other approaches (from standard Gibbs/random walk updates to state-of-the-art Hamiltonian and particle MCMC methods) was carried out for widely varying model types: an individual-based model for disease diagnostic test data, a financial stochastic volatility model, a mixed model used in statistical genetics and a population model used in ecology. While different methods worked better or worse in different scenarios, PBPs were found to be either near to the fastest or significantly faster than the next best approach (by up to a factor of 10). PBPs, therefore, represent an additional general purpose technique that can be usefully applied in a wide variety of contexts. The Royal Society 2019-11-20 /pmc/articles/PMC6894579/ /pubmed/31827823 http://dx.doi.org/10.1098/rsos.190619 Text en © 2019 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Mathematics
Pooley, C. M.
Bishop, S. C.
Doeschl-Wilson, A.
Marion, G.
Posterior-based proposals for speeding up Markov chain Monte Carlo
title Posterior-based proposals for speeding up Markov chain Monte Carlo
title_full Posterior-based proposals for speeding up Markov chain Monte Carlo
title_fullStr Posterior-based proposals for speeding up Markov chain Monte Carlo
title_full_unstemmed Posterior-based proposals for speeding up Markov chain Monte Carlo
title_short Posterior-based proposals for speeding up Markov chain Monte Carlo
title_sort posterior-based proposals for speeding up markov chain monte carlo
topic Mathematics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894579/
https://www.ncbi.nlm.nih.gov/pubmed/31827823
http://dx.doi.org/10.1098/rsos.190619
work_keys_str_mv AT pooleycm posteriorbasedproposalsforspeedingupmarkovchainmontecarlo
AT bishopsc posteriorbasedproposalsforspeedingupmarkovchainmontecarlo
AT doeschlwilsona posteriorbasedproposalsforspeedingupmarkovchainmontecarlo
AT mariong posteriorbasedproposalsforspeedingupmarkovchainmontecarlo