Cargando…
Posterior-based proposals for speeding up Markov chain Monte Carlo
Markov chain Monte Carlo (MCMC) is widely used for Bayesian inference in models of complex systems. Performance, however, is often unsatisfactory in models with many latent variables due to so-called poor mixing, necessitating the development of application-specific implementations. This paper intro...
Autores principales: | Pooley, C. M., Bishop, S. C., Doeschl-Wilson, A., Marion, G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894579/ https://www.ncbi.nlm.nih.gov/pubmed/31827823 http://dx.doi.org/10.1098/rsos.190619 |
Ejemplares similares
-
Markov chain Monte Carlo in practice
por: Gilks, W R, et al.
Publicado: (1995) -
Handbook of Markov chain Monte Carlo
por: Brooks, Steve
Publicado: (2011) -
Markov chains: analytic and Monte Carlo computations
por: Graham, Carl
Publicado: (2014) -
Markov chains: Gibbs fields, Monte Carlo simulation, and queues
por: Brémaud, P
Publicado: (2001) -
Markov chains: Gibbs fields, Monte Carlo simulation and queues
por: Brémaud, Pierre
Publicado: (2020)