Cargando…
Virtual stick balancing: sensorimotor uncertainties related to angular displacement and velocity
Sensory uncertainties and imperfections in motor control play important roles in neural control and Bayesian approaches to neural encoding. However, it is difficult to estimate these uncertainties experimentally. Here, we show that magnitude of the uncertainties during the generation of motor contro...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894588/ https://www.ncbi.nlm.nih.gov/pubmed/31827841 http://dx.doi.org/10.1098/rsos.191006 |
_version_ | 1783476409930350592 |
---|---|
author | Kovacs, Balazs A. Milton, John Insperger, Tamas |
author_facet | Kovacs, Balazs A. Milton, John Insperger, Tamas |
author_sort | Kovacs, Balazs A. |
collection | PubMed |
description | Sensory uncertainties and imperfections in motor control play important roles in neural control and Bayesian approaches to neural encoding. However, it is difficult to estimate these uncertainties experimentally. Here, we show that magnitude of the uncertainties during the generation of motor control force can be measured for a virtual stick balancing task by varying the feedback delay, τ. It is shown that the shortest stick length that human subjects are able to balance is proportional to τ( 2). The proportionality constant can be related to a combined effect of the sensory uncertainties and the error in the realization of the control force, based on a delayed proportional-derivative (PD) feedback model of the balancing task. The neural reaction delay of the human subjects was measured by standard reaction time tests and by visual blank-out tests. Experimental observations provide an estimate for the upper boundary of the average sensorimotor uncertainty associated either with angular position or with angular velocity. Comparison of balancing trials with 27 human subjects to the delayed PD model suggests that the average uncertainty in the control force associated purely with the angular position is at most 14% while that associated purely with the angular velocity is at most 40%. In the general case when both uncertainties are present, the calculations suggest that the allowed uncertainty in angular velocity will always be greater than that in angular position. |
format | Online Article Text |
id | pubmed-6894588 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-68945882019-12-11 Virtual stick balancing: sensorimotor uncertainties related to angular displacement and velocity Kovacs, Balazs A. Milton, John Insperger, Tamas R Soc Open Sci Engineering Sensory uncertainties and imperfections in motor control play important roles in neural control and Bayesian approaches to neural encoding. However, it is difficult to estimate these uncertainties experimentally. Here, we show that magnitude of the uncertainties during the generation of motor control force can be measured for a virtual stick balancing task by varying the feedback delay, τ. It is shown that the shortest stick length that human subjects are able to balance is proportional to τ( 2). The proportionality constant can be related to a combined effect of the sensory uncertainties and the error in the realization of the control force, based on a delayed proportional-derivative (PD) feedback model of the balancing task. The neural reaction delay of the human subjects was measured by standard reaction time tests and by visual blank-out tests. Experimental observations provide an estimate for the upper boundary of the average sensorimotor uncertainty associated either with angular position or with angular velocity. Comparison of balancing trials with 27 human subjects to the delayed PD model suggests that the average uncertainty in the control force associated purely with the angular position is at most 14% while that associated purely with the angular velocity is at most 40%. In the general case when both uncertainties are present, the calculations suggest that the allowed uncertainty in angular velocity will always be greater than that in angular position. The Royal Society 2019-11-27 /pmc/articles/PMC6894588/ /pubmed/31827841 http://dx.doi.org/10.1098/rsos.191006 Text en © 2019 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Engineering Kovacs, Balazs A. Milton, John Insperger, Tamas Virtual stick balancing: sensorimotor uncertainties related to angular displacement and velocity |
title | Virtual stick balancing: sensorimotor uncertainties related to angular displacement and velocity |
title_full | Virtual stick balancing: sensorimotor uncertainties related to angular displacement and velocity |
title_fullStr | Virtual stick balancing: sensorimotor uncertainties related to angular displacement and velocity |
title_full_unstemmed | Virtual stick balancing: sensorimotor uncertainties related to angular displacement and velocity |
title_short | Virtual stick balancing: sensorimotor uncertainties related to angular displacement and velocity |
title_sort | virtual stick balancing: sensorimotor uncertainties related to angular displacement and velocity |
topic | Engineering |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894588/ https://www.ncbi.nlm.nih.gov/pubmed/31827841 http://dx.doi.org/10.1098/rsos.191006 |
work_keys_str_mv | AT kovacsbalazsa virtualstickbalancingsensorimotoruncertaintiesrelatedtoangulardisplacementandvelocity AT miltonjohn virtualstickbalancingsensorimotoruncertaintiesrelatedtoangulardisplacementandvelocity AT inspergertamas virtualstickbalancingsensorimotoruncertaintiesrelatedtoangulardisplacementandvelocity |