Cargando…

Limiting stochastic processes of shift-periodic dynamical systems

A shift-periodic map is a one-dimensional map from the real line to itself which is periodic up to a linear translation and allowed to have singularities. It is shown that iterative sequences x(n+1) = F(x(n)) generated by such maps display rich dynamical behaviour. The integer parts [Formula: see te...

Descripción completa

Detalles Bibliográficos
Autores principales: Stadlmann, Julia, Erban, Radek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894602/
https://www.ncbi.nlm.nih.gov/pubmed/31827870
http://dx.doi.org/10.1098/rsos.191423
Descripción
Sumario:A shift-periodic map is a one-dimensional map from the real line to itself which is periodic up to a linear translation and allowed to have singularities. It is shown that iterative sequences x(n+1) = F(x(n)) generated by such maps display rich dynamical behaviour. The integer parts [Formula: see text] give a discrete-time random walk for a suitable initial distribution of x(0) and converge in certain limits to Brownian motion or more general Lévy processes. Furthermore, for certain shift-periodic maps with small holes on [0,1], convergence of trajectories to a continuous-time random walk is shown in a limit.