Cargando…

SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework

Due to the rapid decrease in the cost of NGS (Next Generation Sequencing), interest has increased in using data generated from NGS to diagnose genetic diseases. However, the data generated by NGS technology is usually in the order of hundreds of gigabytes per experiment, thus requiring efficient and...

Descripción completa

Detalles Bibliográficos
Autores principales: Mushtaq, Hamid, Ahmed, Nauman, Al-Ars, Zaid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894754/
https://www.ncbi.nlm.nih.gov/pubmed/31805063
http://dx.doi.org/10.1371/journal.pone.0224784
_version_ 1783476444006973440
author Mushtaq, Hamid
Ahmed, Nauman
Al-Ars, Zaid
author_facet Mushtaq, Hamid
Ahmed, Nauman
Al-Ars, Zaid
author_sort Mushtaq, Hamid
collection PubMed
description Due to the rapid decrease in the cost of NGS (Next Generation Sequencing), interest has increased in using data generated from NGS to diagnose genetic diseases. However, the data generated by NGS technology is usually in the order of hundreds of gigabytes per experiment, thus requiring efficient and scalable programs to perform data analysis quickly. This paper presents SparkGA2, a memory efficient, production quality framework for high performance DNA analysis in the cloud, which can scale according to the available computational resources by increasing the number of nodes. Our framework uses Apache Spark’s ability to cache data in the memory to speed up processing, while also allowing the user to run the framework on systems with lower amounts of memory at the cost of slightly less performance. To manage the memory footprint, we implement an on-the-fly compression method of intermediate data and reduce memory requirements by up to 3x. Our framework also uses a streaming approach to gradually stream input data as processing is taking place. This makes our framework faster than other state of the art approaches while at the same time allowing users to adapt it to run on clusters with lower memory. As compared to the state of the art, SparkGA2 is up to 22% faster on a large big data cluster of 67 nodes and up to 9% faster on a smaller cluster of 6 nodes. Including the streaming solution, where data pre-processing is considered, SparkGA2 is 51% faster on a 6 node cluster. The source code of SparkGA2 is publicly available at https://github.com/HamidMushtaq/SparkGA2.
format Online
Article
Text
id pubmed-6894754
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-68947542019-12-14 SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework Mushtaq, Hamid Ahmed, Nauman Al-Ars, Zaid PLoS One Research Article Due to the rapid decrease in the cost of NGS (Next Generation Sequencing), interest has increased in using data generated from NGS to diagnose genetic diseases. However, the data generated by NGS technology is usually in the order of hundreds of gigabytes per experiment, thus requiring efficient and scalable programs to perform data analysis quickly. This paper presents SparkGA2, a memory efficient, production quality framework for high performance DNA analysis in the cloud, which can scale according to the available computational resources by increasing the number of nodes. Our framework uses Apache Spark’s ability to cache data in the memory to speed up processing, while also allowing the user to run the framework on systems with lower amounts of memory at the cost of slightly less performance. To manage the memory footprint, we implement an on-the-fly compression method of intermediate data and reduce memory requirements by up to 3x. Our framework also uses a streaming approach to gradually stream input data as processing is taking place. This makes our framework faster than other state of the art approaches while at the same time allowing users to adapt it to run on clusters with lower memory. As compared to the state of the art, SparkGA2 is up to 22% faster on a large big data cluster of 67 nodes and up to 9% faster on a smaller cluster of 6 nodes. Including the streaming solution, where data pre-processing is considered, SparkGA2 is 51% faster on a 6 node cluster. The source code of SparkGA2 is publicly available at https://github.com/HamidMushtaq/SparkGA2. Public Library of Science 2019-12-05 /pmc/articles/PMC6894754/ /pubmed/31805063 http://dx.doi.org/10.1371/journal.pone.0224784 Text en © 2019 Mushtaq et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Mushtaq, Hamid
Ahmed, Nauman
Al-Ars, Zaid
SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework
title SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework
title_full SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework
title_fullStr SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework
title_full_unstemmed SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework
title_short SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework
title_sort sparkga2: production-quality memory-efficient apache spark based genome analysis framework
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894754/
https://www.ncbi.nlm.nih.gov/pubmed/31805063
http://dx.doi.org/10.1371/journal.pone.0224784
work_keys_str_mv AT mushtaqhamid sparkga2productionqualitymemoryefficientapachesparkbasedgenomeanalysisframework
AT ahmednauman sparkga2productionqualitymemoryefficientapachesparkbasedgenomeanalysisframework
AT alarszaid sparkga2productionqualitymemoryefficientapachesparkbasedgenomeanalysisframework