Cargando…
SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework
Due to the rapid decrease in the cost of NGS (Next Generation Sequencing), interest has increased in using data generated from NGS to diagnose genetic diseases. However, the data generated by NGS technology is usually in the order of hundreds of gigabytes per experiment, thus requiring efficient and...
Autores principales: | Mushtaq, Hamid, Ahmed, Nauman, Al-Ars, Zaid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894754/ https://www.ncbi.nlm.nih.gov/pubmed/31805063 http://dx.doi.org/10.1371/journal.pone.0224784 |
Ejemplares similares
-
SparkRA: Enabling Big Data Scalability for the GATK RNA-seq Pipeline with Apache Spark
por: Al-Ars, Zaid, et al.
Publicado: (2020) -
Optimizing performance of GATK workflows using Apache Arrow In-Memory data framework
por: Ahmad, Tanveer, et al.
Publicado: (2020) -
Apache Spark quick start guide: quickly learn the art of writing efficient big data applications with Apache Spark
por: Mehrotra, Shrey, et al.
Publicado: (2019) -
Bioinformatics applications on Apache Spark
por: Guo, Runxin, et al.
Publicado: (2018) -
Stream processing with Apache Spark: mastering structured streaming and Spark streaming
por: Maas, Gerard, et al.
Publicado: (2019)