Cargando…
Cluster analysis on high dimensional RNA-seq data with applications to cancer research - An evaluation study
BACKGROUND: Clustering of gene expression data is widely used to identify novel subtypes of cancer. Plenty of clustering approaches have been proposed, but there is a lack of knowledge regarding their relative merits and how data characteristics influence the performance. We evaluate how cluster ana...
Autores principales: | Vidman, Linda, Källberg, David, Rydén, Patrik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894875/ https://www.ncbi.nlm.nih.gov/pubmed/31805048 http://dx.doi.org/10.1371/journal.pone.0219102 |
Ejemplares similares
-
Comparison of Methods for Feature Selection in Clustering of High-Dimensional RNA-Sequencing Data to Identify Cancer Subtypes
por: Källberg, David, et al.
Publicado: (2021) -
Combining epigenetic and clinicopathological variables improves specificity in prognostic prediction in clear cell renal cell carcinoma
por: Andersson-Evelönn, Emma, et al.
Publicado: (2020) -
Epidemiology and Ecology of Tularemia in Sweden, 1984–2012
por: Desvars, Amélie, et al.
Publicado: (2015) -
Normalization of High Dimensional Genomics Data Where the Distribution of the Altered Variables Is Skewed
por: Landfors, Mattias, et al.
Publicado: (2011) -
Testing for association between RNA-Seq and high-dimensional data
por: Rauschenberger, Armin, et al.
Publicado: (2016)