Cargando…
Forecasting dengue and influenza incidences using a sparse representation of Google trends, electronic health records, and time series data
Dengue and influenza-like illness (ILI) are two of the leading causes of viral infection in the world and it is estimated that more than half the world’s population is at risk for developing these infections. It is therefore important to develop accurate methods for forecasting dengue and ILI incide...
Autores principales: | Rangarajan, Prashant, Mody, Sandeep K., Marathe, Madhav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894887/ https://www.ncbi.nlm.nih.gov/pubmed/31751346 http://dx.doi.org/10.1371/journal.pcbi.1007518 |
Ejemplares similares
-
Sparse representations of high dimensional neural data
por: Mody, Sandeep K., et al.
Publicado: (2022) -
Influenza Forecasting with Google Flu Trends
por: Dugas, Andrea Freyer, et al.
Publicado: (2013) -
Influenza Forecasting with Google Flu Trends
por: Dugas, Andrea F., et al.
Publicado: (2013) -
Improved forecasts of influenza-associated hospitalization rates with Google Search Trends
por: Kandula, Sasikiran, et al.
Publicado: (2019) -
Forecasting influenza-like illness trends in Cameroon using Google Search Data
por: Nsoesie, Elaine O., et al.
Publicado: (2021)