Cargando…

Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions

Quantum technology relies on proper hardware, enabling coherent quantum state control as well as efficient quantum state readout. In this regard, wide-bandgap semiconductors are an emerging material platform with scalable wafer fabrication methods, hosting several promising spin-active point defects...

Descripción completa

Detalles Bibliográficos
Autores principales: Niethammer, Matthias, Widmann, Matthias, Rendler, Torsten, Morioka, Naoya, Chen, Yu-Chen, Stöhr, Rainer, Hassan, Jawad Ul, Onoda, Shinobu, Ohshima, Takeshi, Lee, Sang-Yun, Mukherjee, Amlan, Isoya, Junichi, Son, Nguyen Tien, Wrachtrup, Jörg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895084/
https://www.ncbi.nlm.nih.gov/pubmed/31804489
http://dx.doi.org/10.1038/s41467-019-13545-z
_version_ 1783476517889638400
author Niethammer, Matthias
Widmann, Matthias
Rendler, Torsten
Morioka, Naoya
Chen, Yu-Chen
Stöhr, Rainer
Hassan, Jawad Ul
Onoda, Shinobu
Ohshima, Takeshi
Lee, Sang-Yun
Mukherjee, Amlan
Isoya, Junichi
Son, Nguyen Tien
Wrachtrup, Jörg
author_facet Niethammer, Matthias
Widmann, Matthias
Rendler, Torsten
Morioka, Naoya
Chen, Yu-Chen
Stöhr, Rainer
Hassan, Jawad Ul
Onoda, Shinobu
Ohshima, Takeshi
Lee, Sang-Yun
Mukherjee, Amlan
Isoya, Junichi
Son, Nguyen Tien
Wrachtrup, Jörg
author_sort Niethammer, Matthias
collection PubMed
description Quantum technology relies on proper hardware, enabling coherent quantum state control as well as efficient quantum state readout. In this regard, wide-bandgap semiconductors are an emerging material platform with scalable wafer fabrication methods, hosting several promising spin-active point defects. Conventional readout protocols for defect spins rely on fluorescence detection and are limited by a low photon collection efficiency. Here, we demonstrate a photo-electrical detection technique for electron spins of silicon vacancy ensembles in the 4H polytype of silicon carbide (SiC). Further, we show coherent spin state control, proving that this electrical readout technique enables detection of coherent spin motion. Our readout works at ambient conditions, while other electrical readout approaches are often limited to low temperatures or high magnetic fields. Considering the excellent maturity of SiC electronics with the outstanding coherence properties of SiC defects, the approach presented here holds promises for scalability of future SiC quantum devices.
format Online
Article
Text
id pubmed-6895084
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-68950842019-12-09 Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions Niethammer, Matthias Widmann, Matthias Rendler, Torsten Morioka, Naoya Chen, Yu-Chen Stöhr, Rainer Hassan, Jawad Ul Onoda, Shinobu Ohshima, Takeshi Lee, Sang-Yun Mukherjee, Amlan Isoya, Junichi Son, Nguyen Tien Wrachtrup, Jörg Nat Commun Article Quantum technology relies on proper hardware, enabling coherent quantum state control as well as efficient quantum state readout. In this regard, wide-bandgap semiconductors are an emerging material platform with scalable wafer fabrication methods, hosting several promising spin-active point defects. Conventional readout protocols for defect spins rely on fluorescence detection and are limited by a low photon collection efficiency. Here, we demonstrate a photo-electrical detection technique for electron spins of silicon vacancy ensembles in the 4H polytype of silicon carbide (SiC). Further, we show coherent spin state control, proving that this electrical readout technique enables detection of coherent spin motion. Our readout works at ambient conditions, while other electrical readout approaches are often limited to low temperatures or high magnetic fields. Considering the excellent maturity of SiC electronics with the outstanding coherence properties of SiC defects, the approach presented here holds promises for scalability of future SiC quantum devices. Nature Publishing Group UK 2019-12-05 /pmc/articles/PMC6895084/ /pubmed/31804489 http://dx.doi.org/10.1038/s41467-019-13545-z Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Niethammer, Matthias
Widmann, Matthias
Rendler, Torsten
Morioka, Naoya
Chen, Yu-Chen
Stöhr, Rainer
Hassan, Jawad Ul
Onoda, Shinobu
Ohshima, Takeshi
Lee, Sang-Yun
Mukherjee, Amlan
Isoya, Junichi
Son, Nguyen Tien
Wrachtrup, Jörg
Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions
title Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions
title_full Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions
title_fullStr Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions
title_full_unstemmed Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions
title_short Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions
title_sort coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895084/
https://www.ncbi.nlm.nih.gov/pubmed/31804489
http://dx.doi.org/10.1038/s41467-019-13545-z
work_keys_str_mv AT niethammermatthias coherentelectricalreadoutofdefectspinsinsiliconcarbidebyphotoionizationatambientconditions
AT widmannmatthias coherentelectricalreadoutofdefectspinsinsiliconcarbidebyphotoionizationatambientconditions
AT rendlertorsten coherentelectricalreadoutofdefectspinsinsiliconcarbidebyphotoionizationatambientconditions
AT moriokanaoya coherentelectricalreadoutofdefectspinsinsiliconcarbidebyphotoionizationatambientconditions
AT chenyuchen coherentelectricalreadoutofdefectspinsinsiliconcarbidebyphotoionizationatambientconditions
AT stohrrainer coherentelectricalreadoutofdefectspinsinsiliconcarbidebyphotoionizationatambientconditions
AT hassanjawadul coherentelectricalreadoutofdefectspinsinsiliconcarbidebyphotoionizationatambientconditions
AT onodashinobu coherentelectricalreadoutofdefectspinsinsiliconcarbidebyphotoionizationatambientconditions
AT ohshimatakeshi coherentelectricalreadoutofdefectspinsinsiliconcarbidebyphotoionizationatambientconditions
AT leesangyun coherentelectricalreadoutofdefectspinsinsiliconcarbidebyphotoionizationatambientconditions
AT mukherjeeamlan coherentelectricalreadoutofdefectspinsinsiliconcarbidebyphotoionizationatambientconditions
AT isoyajunichi coherentelectricalreadoutofdefectspinsinsiliconcarbidebyphotoionizationatambientconditions
AT sonnguyentien coherentelectricalreadoutofdefectspinsinsiliconcarbidebyphotoionizationatambientconditions
AT wrachtrupjorg coherentelectricalreadoutofdefectspinsinsiliconcarbidebyphotoionizationatambientconditions