Cargando…
Deep learning enables pathologist-like scoring of NASH models
Non-alcoholic fatty liver disease (NAFLD) and the progressive form of non-alcoholic steatohepatitis (NASH) are diseases of major importance with a high unmet medical need. Efficacy studies on novel compounds to treat NAFLD/NASH using disease models are frequently evaluated using established histolog...
Autores principales: | Heinemann, Fabian, Birk, Gerald, Stierstorfer, Birgit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895116/ https://www.ncbi.nlm.nih.gov/pubmed/31804575 http://dx.doi.org/10.1038/s41598-019-54904-6 |
Ejemplares similares
-
Deep neural network based histological scoring of lung fibrosis and inflammation in the mouse model system
por: Heinemann, Fabian, et al.
Publicado: (2018) -
Deep learning-based quantification of NAFLD/NASH progression in human liver biopsies
por: Heinemann, Fabian, et al.
Publicado: (2022) -
Automatization and improvement of μCT analysis for murine lung disease models using a deep learning approach
por: Birk, Gerald, et al.
Publicado: (2020) -
CXCR2 inhibition enables NASH-HCC immunotherapy
por: Leslie, Jack, et al.
Publicado: (2022) -
Modulation of vascular contraction via soluble guanylate cyclase signaling in a novel ex vivo method using rat precision‐cut liver slices
por: Oldenburger, Anouk, et al.
Publicado: (2021)