Cargando…

Saline aqueous fluid circulation in mantle wedge inferred from olivine wetting properties

Recently, high electrical conductors have been detected beneath some fore-arcs and are believed to store voluminous slab-derived fluids. This implies that the for-arc mantle wedge is permeable for aqueous fluids. Here, we precisely determine the dihedral (wetting) angle in an olivine–NaCl–H(2)O syst...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Yongsheng, Nakatani, Takayuki, Nakamura, Michihiko, McCammon, Catherine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895192/
https://www.ncbi.nlm.nih.gov/pubmed/31804479
http://dx.doi.org/10.1038/s41467-019-13513-7
Descripción
Sumario:Recently, high electrical conductors have been detected beneath some fore-arcs and are believed to store voluminous slab-derived fluids. This implies that the for-arc mantle wedge is permeable for aqueous fluids. Here, we precisely determine the dihedral (wetting) angle in an olivine–NaCl–H(2)O system at fore-arc mantle conditions to assess the effect of salinity of subduction-zone fluids on the fluid connectivity. We find that NaCl significantly decreases the dihedral angle to below 60° in all investigated conditions at concentrations above 5 wt% and, importantly, even at 1 wt% at 2 GPa. Our results show that slab-released fluid forms an interconnected network at relatively shallow depths of ~80 km and can partly reach the fore-arc crust without causing wet-melting and serpentinization of the mantle. Fluid transport through this permeable window of mantle wedge accounts for the location of the high electrical conductivity anomalies detected in fore-arc regions.