Cargando…

Single Photon Randomness based on a Defect Center in Diamond

The prototype of a quantum random number generator is a single photon which impinges onto a beam splitter and is then detected by single photon detectors at one of the two output paths. Prior to detection, the photon is in a quantum mechanical superposition state of the two possible outcomes with –i...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xing, Greiner, Johannes N., Wrachtrup, Jörg, Gerhardt, Ilja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895230/
https://www.ncbi.nlm.nih.gov/pubmed/31804519
http://dx.doi.org/10.1038/s41598-019-54594-0
Descripción
Sumario:The prototype of a quantum random number generator is a single photon which impinges onto a beam splitter and is then detected by single photon detectors at one of the two output paths. Prior to detection, the photon is in a quantum mechanical superposition state of the two possible outcomes with –ideally– equal amplitudes until its position is determined by measurement. When the two output modes are observed by a single photon detector, the generated clicks can be interpreted as ones and zeros – and a raw random bit stream is obtained. Here we implement such a random bit generator based on single photons from a defect center in diamond. We investigate the single photon emission of the defect center by an anti-bunching measurement. This certifies the “quantumness” of the supplied photonic input state, while the random “decision” is still based on the vacuum fluctuations at the open port of the beam-splitter. Technical limitations, such as intensity fluctuations, mechanical drift, and bias are discussed. A number of ways to suppress such unwanted effects, and an a priori entropy estimation are presented. The single photon nature allows for a characterization of the non-classicality of the source, and allows to determine a background fraction. Due to the NV-center’s superior stability and optical properties, we can operate the generator under ambient conditions around the clock. We present a true 24/7 operation of the implemented random bit generator.