Cargando…
Inbreeding and inbreeding depression of Paeonia decomposita (Paeoniaceae), a threatened endemic plant to China
BACKGROUND: Small populations are predominantly vulnerable to inbreeding and inbreeding depression (ID). Owing to increased levels of inbreeding on individuals in small populations, ID could decrease the population growth rate, as well as its effective size, and exacerbate the extinction risk. Inbre...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895296/ https://www.ncbi.nlm.nih.gov/pubmed/31807904 http://dx.doi.org/10.1186/s40529-019-0276-8 |
Sumario: | BACKGROUND: Small populations are predominantly vulnerable to inbreeding and inbreeding depression (ID). Owing to increased levels of inbreeding on individuals in small populations, ID could decrease the population growth rate, as well as its effective size, and exacerbate the extinction risk. Inbreeding depression remains a crucial area of research in conservation biology, ecology, and evolutionary biology. This study aims to elucidate the reproductive biology, inbreeding, and ID of Paeonia decomposita and to conserve, manage, and improve them better in the future. RESULTS: Paeonia decomposita belongs to a xenogamous category and is partially self-compatible; moreover, it requires pollinators for seed production. Lately, the occurrence of pollination and pollinator limitations has affected the seed set. Low seed set primarily correlated with an abnormality of meiosis in the pollen mother cell, moderate to low genetic diversity, drought and extreme weather, pollinator limitation, or carpel space limit. One of the primary reasons for endangered mechanism in P. decomposita is the low seed set under natural conditions. The cumulative value of ID was positive, and outcrossed progeny outperformed selfed progeny. CONCLUSIONS: Paeonia decomposita requires pollinators to ensure seed production either through autogamy, geitonogamy, or allogamy. It is both allogamous and partially self-compatible, as well as a successful outcrosser. Inbreeding occurs frequently and results in ID, which imposes a potential threat to the survival of populations. Besides, it needs conservation via in situ and natural return methods. |
---|